
Discussion

• A very good performance of the SWAT model calibration and validation using ETa

configured using Hargreaves ETp equation with both ETMonitor and GLEAM was indicated

by all performance metrics while SSEBop and WaPOR ETa showed low performance.

These findings showed better values than those found by other studies [6].

• the dynamic of the SWAT SM fit very well with the ESA CCI SSM (%) in the upper few

centimeters of the soil profile in most of the basin at a monthly time step [6,7].

• the SWAT TWSC was in good agreement with the GRACE retrievals, although the

differences in the wet months were at times large and not systematic [7].

• the runoff simulated by our study is comparable to the other studies in recent years (i.e.,

after 1970), notwithstanding the different temporal and spatial coverage of the study.

All the model studies and the observed runoff confirmed the increase in the runoff in the

comparison period starting from 2009, and followed similar trends and fluctuations. The

difference in some values between our study and the two other studies is probably due to the

different spatial coverage [8].

Results

ETMonitor and GLEAM showed best performance while WaPOR and SSEBop indicated lower

performance. The Hargreaves (HG) potential evapotranspiration equation showed better

performance than Penman–Monteith (PM) and Priestley–Taylor (PT).

Not only the ETa was changed after calibration because it was the calibrated variable But the

calibration clearly changed the other water balance components.

Objective: 
The objectives of this study are:

1) to evaluate the performance of the SWAT model after a limited calibration period (one

year) using multiple satellite remote sensing ETa products, which would be the novelty

of this study.

2) to validate the model using remote sensing ETa, total water storage, and soil moisture

in a distributed manner in the whole Lake Chad Basin.

Study area

The Sahel :

is a transitional zone between the Sahara desert to the north and the humid savannas to the

south, its semi-arid climate is characterized by a very important variation in rainfall throughout

years which oscillates between 300 and 600 mm also the temperature varies from one region to

another and throughout years but generally it is high.

Chad Lake

was about 2.5 Mkm2, 8% of the African continent, and the largest endorheic basin in the world

(Gao et al., 2011).

Method:

Input Data

• Meteorological data : precipitation (CHIRPS, 5 Km) other meteorological data (ERA5, 

30 km).

• LULC: Tsinghua LULC maps for each year from 2009-2015 in resolution of 250 m.

• Soil data :The Harmonized World Soil Database (HWSD) version 1.2 .

• Digital Elevation Model (DEM): SRTM Shuttle Radar Topography Mission in 30 m 

resolution

Data for calibration and validation

• Remote Sensing ET products : four products :

• ETMonitor_V1.1, GLEAM_V3.3a, SSEBop_V4 and WaPOR_V1.1.

• Other Remote Sensing observable products : 

• Total water storage change TWSC: GRACE

• Remote Sensing Surface Soil Moisture ESA CCI SSM v5.2

Soil and Water Assessment Tool model (SWAT)

The SWAT model is an open-source, process-based, and semi-distributed model is widely

used to simulate different water balance components in a watershed [1].

In this study, three available ETp equations (Hargreaves, Priestley–Taylor, and Penman–

Monteith) were used to configure the SWAT model to estimate the ETa.

Then using SWAT-CUP [2], four satellite-observation-based ETa data products (ETMonitor,

GLEAM, SSEBop and WaPOR) were evaluated, and the one with the best performance was

used for further analysis.

For validation, the results from the calibrated SWAT were assessed by comparing with the

satellite-based observations of surface layer soil moisture and terrestrial water storage

change.

SWAT-CUP [3] provides three techniques to modify the selected model parameters through

the iterations: (a) by a multiplicative factor “(1+α)”; (b) by adding a constant “β”; and (c)

assigning a parameter a new value “γ”. The default parameter value (P) is replaced with a new

candidate value (Pnew) in each iteration by:

Pnew = P x (1 + α)                                (1)

Pnew = P + β                                        (2)

Pnew = γ                                               (3)

where α, β and γ are the final values obtained by the calibration. In this study we have used

(a) multiplicative and (c) replace techniques.

Spatial distribution of the performance metrics

during calibration of SWAT configured using

Hargreaves .

ETMonitor showed the best performance then

GLEAM took place after that SSEBop is a little

better than WaPOR but both indicated lower

performance.
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The conceptual framework of this study: (a) the SWAT flowchart (and uncalibrated model

outputs), (b) SWAT-CUP flowchart (parameter selection and calibration), and (c) the

validation schemes (using the calibrated model).

Parameters
used range

full name
SWAT range

Unit default values
min max min max

1 r1__CN2.mgt -0.5 0.25 SCS runoff curve number f 35 98 % specific to HRU

2 r2__SOL_AWC().sol -0.5 0.95
Available water capacity of the soil 

layer
0 1

mm H2O/mm 

soil
specific to soil

3 r3__SOL_BD().sol -0.5 0.95 Moist bulk density 0.9 2.5 Mg/m3 specific to soil

4 r4__SOL_ALB().sol -0.03 0.2 Moist soil albedo 0 0.25 % specific to soil

5 v1__ESCO.hru 0.25 0.95 Plant uptake compensation factor 0 1 - 0.95

6
v2__BLAI{15,16}.pla

nt
0 5 Max leaf area index 0 10 -

specific to plant

7
v3__GSI{15,16}.plan

t.
0 5 Max stomatal conductance 0 5 ms-1 specific to plant

8 v4__HRU_SLP.hru 0 1 Average slope steepness 0 1 m/m HRU Specific 

9 r5__SOL_CBN().sol -0.03 0.2 Organic carbon content 0.05 10
%

Soil weight
specific to soil

10 r6__SOL_Z().sol -0.03 0.2
Depth from soil surface to bottom of 

layer
0 3500 mm specific to soil

11 v5__SLSOIL.hru 0 150
Slope length for lateral subsurface 

flow
0 150

m
0

12 v6__FFCB.bsn 0 1

Initial soil water storage expressed 

as a fraction of field capacity water 

content
0 1 - 0

13 v7__DDRAIN.mgt 0 200 Depth to subsurface drain 0 2000 mm 0

14 v8__EPCO.hru 0 1
Soil evaporation compensation 

factor
0 1 - 1

15 v9__SURLAG.bsn 0.05 24 Surface runoff  lag time 0.05 24 - 4

Selected Parameters description [4]

Performance Metrics Equations Descriptions

Coefficient of 
determination

Nash–Sutcliffe Efficiency

Kling–Gupta Efficiency

Percent bias

Performance metrics used to evaluate the calibration and validation [5]

low

acceptable to good
good to very good

very good
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Comparison of monthly averaged ETa before and after

calibration and ETM ETa.

Comparison with previous studies

Study Time Period Study Area Mean Runoff (mm/Year)

1 LCBC, 2016 1954–1969 Lake Chad 170.7

2 Odada et al. 2006 Pre-1970 Lake Chad 90.8

3 Vuillaume, 1981 1954–1969 Chari-Logone Basin 67.67

4 Olivry et al. 1996 1932–1995 Chari-Logone Basin 52.64

5 Odada et al. 2006 1971–1990 Lake Chad 42.22

6 LCBC, 2016 1988–2010 Lake Chad 65.7

7 Zhu et al. 2017 1991–2013 Southern Pool of Lake Chad 40.52

8 Mahamat Nour et al. 2021 1960–2015 Chari-Logone Basin 42

9 Lemoalle et al. 2012 1960–2009 Chari-Logone Basin 41.35

10 Our study 2009–2015 Southern Lake Chad Basin 51.9

Comparison with previous studies

Average annual water balance components in the study area in the Lake Chad Basin based
on SWAT-simulated output before (Uncalibrated) and after (Calibrated) calibration. (ETa:
actual evapotranspiration; SW: soil water content; PERC: perception; SURQ: surface runoff;
GW_Q: groundwater recharge; WYLD: water yield; LATQ: lateral runoff.

The impact of calibration on ETa is clearly shown in 

this figure.

Comparison between monthly averaged SWAT SWC vs. ESA

CCI SM at 50 mm during 2009–2015 in the study area in the

Lake Chad Basin: the scatter plot, and the time series.

Comparison between monthly TWSC averaged over the study

area in the Lake Chad Basin for 2009–2015: SWAT estimates

and GRACE data product, at 1 km resolution: scatter plot, time

series, and at 300 km resolution: scatter plot, time series.

Seasonal comparison between monthly averaged SWAT and

ESA CCI SSM at 1 cm on 2009 as driest year: (a) dry

months, (b) wet months and on 2012 as wettest year: (c) dry

months, and (d) wet months.

Spatial distribution of performance metrics (R2,

NSE, and KGE) of SWAT_Hargreaves when

validated against ETMonitor in 2010, 2011, 2012,

2013, 2014, and 2015 (a,b,c,d,e,f), respectively,

in the Lake Chad Basin.

Spatial distribution of performance metrics (R2, NSE,

and KGE) of SWAT_Hargreaves, when calibrated in

2009 against ETMonitor, GLEAM, WaPOR, and

SSEBop the Lake Chad Basin.

Spatial distribution of performance metrics (R2, NSE, and

KGE) of SWAT_Hargreaves, Penman-Monteith and

Priestley-Taylor when calibrated in 2009 against ETMonitor,

GLEAM, WaPOR, and SSEBop the Lake Chad Basin.

The location of the African Sahel, the Lake Chad

Basin, the study area (Southern Lake Chad

Basin), and the 37 sub-basins.

Evolution of Lake Chad. Optical imagery from (a)

Argon satellite (b) 119 Landsat 1 (c) Landsat 5 (d)

Landsat 7 (e) Landsat 8.

Introduction: 

Hydrological models are most useful tool to reveal the hydrological processes that occur in a

changing environment. Therefore, the accurate calibrated model is essential for understanding

assessment of drought, impacts of climate change, impacts of land use/land cover change,

assessment of Water scarcity, sediments and nutrients evaluation and water stress/conflict within

basins. Model calibration is usually based on ground observations such as surface runoff. This

kind of data must be available in long time series to get good calibration performance. Ground

observation scarcity is the main problem for hydrological model calibration such as in Africa.

In solution, many studies found that retrievals of hydrological variables from remote sensing

data may help to improve model performance. Many studies have used remote sensing ETa to

calibrate and validate hydrological models:

* Ha et al., (2018) used three years of remote sensing ETa to calibrate the SWAT model

for a tributary of the Red River in Vietnam.

* Poméon et al., (2018) validated the SWAT model using time series of remote sensing

data in the Niger, Volta, and Senegal River Basins.

* Odusanya et al. (2019) calibrated the SWAT model using ETa from GLEAM and

MOD16 in the Ogun catchment in Southwestern Nigeria.

All the previous studies showed good calibration and validation performance. However, they

did not well emphasize the benefit of the geospatial distribution of remote sensing retrievals,

which could resolve the problem of the lack of ground observation time series, e.g., discharge.

This presentation aims to provide a novel calibration approach of the SWAT model based on

limited time series of earth observation data in a data-scarce Lake Chad Basin.

Abstract: The distributed hydrological models are important tools potentially used for policy planning and decision-making in terms of water-soil balance at the catchment level in different environmental conditions. However, the model calibration and validation present a crucial challenging task in poorly gauged basins,

e.g. many river basins in Africa. Our study contributed to providing an operational framework to calibrate hydrological models by using distributed geospatial remote sensing data. The Soil and Water Assessment Tool (SWAT) model was calibrated in monthly steps using only twelve months of satellite-based actual

evapotranspiration (ETa) geospatially distributed in the 37 sub-basins of the Lake Chad Basin in Africa. The identification of influential model parameters was done based on global sensitivity analysis by applying the Sequential Uncertainty Fitting Algorithm–version 2 (SUFI-2), incorporated in the SWAT-Calibration and

Uncertainty Program (SWAT-CUP). This technique is designed to deal with spatially variable parameters and estimates either multiplicative or additive corrections applicable to the entire model domain, which limits the number of unknowns while preserving spatial variability. Fifteen influential parameters were selected

for calibration based on the sensitivity analysis. The optimized parameters set could achieve the best model performance judging by the high Nash–Sutcliffe Efficiency (NSE), Kling–Gupta Efficiency (KGE), and determination coefficient (R2). Four sets of ET were tested for SWAT model calibration, i.e. ETMonitor,

GLEAM, SSEBop and WaPOR. Overall, the calibration performance was very good, especially when matching the SWAT ET calculated with Hargreaves-equation based potential ET (ETp), to the ETMonitor ET and GLEAM ET, with performance metrics R2> 0.9, NSE>0.8 and KGE>0.75. The ETMonitor ET product was

finally adopted for the SWAT model calibration in this study for further application, since it showed the best calibration results. The calibrated SWAT model were further validated by comparing its outputs with the total water storage change (TWSC) derived from GRACE and surface soil moisture from ESA – CCI product.

The validation during 2010-2015 using total water storage derived from GRACE gave an acceptable performance, i.e. R2=0.56 and NSE=0.55. The evaluation against the ESA – CCI soil moisture showed NSE=0.85.

Keywords: hydrological modeling; SWAT model; hydrological remote sensing observables; ETMonitor evapotranspiration; African Sahel; limited calibration
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Conclusions

• This study demonstrated that it is feasible to calibrate the semi-distributed regional

hydrological model SWAT for the entire LCB, notwithstanding the scarcity of

hydrological data, by using remote sensing data products of ETa

• The innovative aspect of the limited calibration (one year on a monthly timescale)

results showed that the remote sensing products are useful to calibrate and validate

the SWAT model in arid to semi-arid poorly gauged basins, even though the

temporal coverage of the calibration was limited.

• Differences across the remote sensing ETa products were significant, consistently

with the different algorithms used to estimate the ETa. The statistical analysis of both

calibration and validation results indicated that the ETMonitor and GLEAM led to a

better SWAT performance than SSEBop and WaPOR.

• SWAT estimates of SWC and TWSC were compared with satellite data products.

Overall, the agreement was good, further confirming the usefulness of the proposed

limited calibration in our data-scarce study area.

• The results of this study are comparable to previous studies results as well as to the

observed data.

• The limited calibration of a hydrological model using remote sensing data is one of

the solutions to deal with the scarcity of hydrological data, and also it needs less

computational capacity and time, as opposed to a calibration done for several years

which requires much computational time and resources.
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Actual evapotranspiration validation

Calibration by using actual evapotranspiration

Impact of calibration on different simulated 
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