
5b. Scale analysis

N Paciolla1, C Corbari1, M Mancini1
1Politecnico, Milano

nicola.paciolla@polimi.it

1. Introduction 2b. Materials

4. Model calibration/validation

Day-to-day crop management requires extensive
and comprehensive tools providing a full
knowledge of the plants’ status. Hydrological
modelling allows to monitor the water mass
exchanges in the soil-surface-atmosphere layer
by characterizing the main driving forces that
direct them. The EvapoTranspiration (ET), sum of
the water freely evaporated from the soil and
transpired through the plant leaf stomata, is
often considered a handy proxy for plant
irrigation demand. Recently, remote/proximal
sensing (RPS) has improved hydrological
modelling: data can be obtained with a relatively
high temporal frequency (up to a daily basis) and
with varying spatial resolutions (up to 10 m for
satellite data, 100-1 cm for proximal sensing).
Thus, the joint use of hydrological modelling and
RPS can help define the management for
irrigation water use optimization. The trade-off
between data heterogeneity and data quality
varies greatly: homogeneous crops (like maize)
can be studied with field-size spatial resolution,
while more heterogeneous crops (like arboreal
cultivations) may require a distinction between
the single plant and the surrounding terrain
through higher-resolution data.
The main objective of this study is to determine
the RPS-powered model sensitivity in terms of ET
– hence of irrigation water requirements – with
spatial resolution. The main investigation points
are: (1) Is high resolution data strictly necessary
to accurately model an area as heterogeneous as
a vineyard? (2) Can a high-resolution calibration
help the model to interpret low-resolution data?

Conclusions
(1) FEST-EWB has shown the ability of effectively interpreting land surface temperature even at coarse spatial resolutions and in highly-heterogeneous fields, thanks to its balances partition mechanism 
between vegetated and non-vegetated portions of each pixel. (2) Water irrigation management, if employing hydrological modelling, can be accurately performed with frequent, low-resolution satellite 
data, requiring a low effort and cost in data retrieval.
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5a. Outputs & Inputs Upscaling

Test days 11th Jun 3rd Jul 22nd Jul 22nd Aug 3rd Sep

DOYs (year 2008) 163 185 204 235 247

Meteorological data ● ● ● Partial ●
Energy Fluxes ● ● ● Partial ●
Flight time (local, UTC+2) 10:45 08:15 08:45 09:15 08:45

Land Surface Temperature ● ● ● ● ●
Calibration date Yes No Yes No Yes

Validation date Yes Yes No Yes Yes

Date Bias Slope R2
RMSE [°C] sorted by LAI [m2/m2] (pixel num.) Global 

RMSE< 0.5 0.5 – 1 1 – 1.5 1.5 – 2 ≥ 2

11th Jun -2.2°C 0.869 .71 3.5 (18%) 2.8 (27%) 3.0 (22%) 3.8 (15%) 4.5 (17%) 3.5°C

22nd Jul -1.0°C 0.495 .61 5.6 (13%) 4.4 (13%) 3.7 (16%) 3.4 (15%) 3.3 (42%) 3.9°C

3rd Sep +0.0°C 0.812 .79 3.8 (25%) 2.7 (18%) 2.3 (20%) 2.0 (16%) 2.2 (22%) 2.8°C

Five airborne proximal sensing acquisitions have been carried out
during the summer of 2008, with sampling height around 1000 m
above ground level [1]. A multispectral camera has been used to
retrieve the visible (VIS) and near-infrared (NIR) images, at 0.7 m
spatial resolution; another, lower-resolution camera provided the
thermal infrared (TIR) images at 1.7 m spatial resolution.
Simultaneous Leaf Area Index (LAI) and vegetation fraction (fV) data
have been gathered with an optoelectronics tool. Plant height
information has been obtained from VIS data by means of an
empirical relation calibrated in situ. Flight data is detailed in the Table
on the right.

RET-LST comparison results show a good correspondence, especially in the distinction between warmer
bare-soil areas and cooler vegetated patches. Some areas have been blanked out, as not pertinent to the
analysis (artificial basins, tarmac and buildings).
Model biases (difference between modelled RET and estimated LST) seem to be normally distributed
around their average value, with most of the pixels (61%, 59% and 78% for each date, respectively)
displaying an error within ±3°C of the target LST.
• 11th June seems to have a quite uniform error distribution,
• 22nd July shows important underestimation-errors in the non-vegetated areas,
• 3rd September displays a diffused overestimation in the vegetated part.
In all three dates, however, some “spot”-like errors are present, mostly found in the western part of the
image. For these “spot”-like areas, the model error seems to be distinguished from that of the rest of the
area: on 11th June, the model is much cooler than the LST in that area with respect to the central part of
the test site, and on 22nd July a sudden change in model trend (from a sharp overestimation to a mild
underestimation) is clearly visible. These problems may be due to the nature of the LST images employed,
which can be conditioned by temporary cloud cover over the target area.

The adaptation statistics for the calibration process are detailed in the Table below. On the left-hand side,
classic adaptation statistics are displayed: model-to-data bias, slope of the linear regression and
determination coefficient (R2). On the right-hand side, the surface temperature error (expressed in terms
of Root Mean Square Error, RMSE) is sorted by vegetation density (in terms of Leaf Area Index, LAI) of the
relative pixel. Generally, lower errors are found for medium-to-high vegetation levels, although the 11th
June test date shows a less definite trend.

On the left, all the parameters involved in the scale analysis are
presented, for the example 11th June date (11:00 local time):
flight-sensed Land Surface Temperature (LST) and modelled Latent
Heat (L), Sensible Heat (H), Soil Moisture (SM) and Representative
Equilibrium Temperature (RET). Some surface heterogeneity
features – like bare-soil paths – are preserved in the first step
(10.2 m) and still distinguishable in the second (30.6 m), where
the scale ratio is 18:1. From the third step (244.8 m) all
heterogeneity is lost. Apart from absolute-value differences, both
LST and RET are similarly affected by the upscaling process.

In the plot below, the effects of the upscaling processes are
detailed. For each plot, the darkened area identifies the one-
standard-deviation-range (±σ) around the average value. Being
the 734.4 m step made up of just one pixel, all standard
deviations are null at that stage.

In the Upscaling Outputs (UO) approach, as scales progress, the
overall data average is unaffected, because of the intrinsic
properties of the average operation. On the other hand, the
standard deviation decreases with scale, as fewer pixels covering
the same area determine a decreasing heterogeneity of the data.
• The positive model interpretation of the LST transpires from

the similar shape of the RET and LST plots. The bias that
separates them at the native resolution, detailed above, is
preserved along the aggregation process.

• Latent Heat tends to be more widely distributed than Sensible
Heat. This distinction holds until the 30.6 m threshold, with
the two fluxes gaining similar heterogeneity by the 244.8 m
step. This is consistent with the maps shown above, where the
heterogeneity features are shown to hold until the 30.6 m
upscaling step. The entity of these heterogeneity shifts is
detailed in the Table below. For each product and each scale,
the Variation Coefficient (standard deviation normalized over
the average value) is shown, progressively decreasing with the
increase of the spatial resolution.

In the Upscaling Inputs (UI) approach, data inputs have been
upscaled to the different target scales before being employed in
the model. Thus, after calibration, the model results are produced
directly at the target scale, simulating the functioning of the
model at coarser resolutions for the same data set. The effect of
the calibration on the parameters is detailed in the Table below
for all the calibration steps. The Variation Coefficient (an indirect
measure of the dataset heterogeneity) stays high (above 50%)
until the 30.6 m step, before plummeting to the 25% value of the
244.8 m scale. The calibration functions employed for the two
parameters are practically the same, except for heavily-
overestimated values. This distinction brings about different
calibrated datasets until the 10.2 m step. By the 30.6 m scale, the
most extreme overestimations have been smoothed out, and the
two parameters converge to similar distributions.
Turbulent fluxes show similar behaviours to those of the Upscaled
Outputs, with smaller variation coefficients, mainly for the Latent
Heat and higher resolutions. This may be attributed to the loss in
spatial heterogeneity caused by the upscaling process: working on
less heterogeneous input data, the model provides less
heterogeneous outputs. By comparison, the more diverse
aggregated outputs descend from already-diverse data modelled
at high resolution.
These concepts are less visible for the Soil Moisture, as evident by
its similarity. The difference is minimal because of the reduced soil
moisture dynamics due to the brevity of the simulated period.
Most pixels retain values very close to those of the starting
condition, which is obviously uninfluenced by the upscaling
approach.

In the plot below, green dots identify the average temperature biases (model RET against flight LST) obtained by the
Upscaled Outputs approach. The area highlights the one-standard-deviation-range around the mean value (±σ). As
already discussed, the averaging process preserves the global mean. On the other hand, the orange dots provide the
average temperature biases for the Upscaled Inputs approach, with the orange areas identifying the standard
deviation range as above. The independent calibrations that produce the UI results, although completely unrelated
to the UO data, provide quite similar temperature biases. For high resolutions (10.2 m and 30.6 m) the average
biases are particularly close to the UO results. Coarser resolutions lose some of that similarity (in particular on 3rd

September), but the overall comparison of the two datasets remains remarkable. Generally, low (absolute) biases can
be attained with either of the upscaling approaches, as in both the error-minimization calibration rationale is
employed.

The calibration parameters have been corrected across numerous simulations with the aim of minimizing the temperature error. Originally, soil surface resistance was set to 500 s/m for all the pixels; minimum stomatal 
resistance, on the other hand, was set to 200 s/m (vineyard) for highly-vegetated pixels and to 50 s/m (grass) for the rest of the area, based on literature values.

Parameter Before Calibration After Calibration

Statistic Average Min – Max Average Min – Max

rsMIN 128 s/m 50 – 200 s/m 606 s/m 50 – 1920 s/m

rS 500 s/m - 603 s/m 0 – 1920 s/m

Upscaled Inputs

Upscaled Outputs

Scale Rsmin Rs LST RETin RETout Lin Lout Hin Hout SMin SMout

1.7 m (Original) 127 s/m 59% 500 s/m 0%
14%

15% 63% 34% 26%

1.7 m (Calibrated) 579 s/m 63% 603 s/m 63%

10.2 m 410 s/m 51% 407 s/m 52% 12% 13% 12% 34% 57% 22% 30% 19% 20%

30.6 m 355 s/m 58% 355 s/m 58% 10% 11% 10% 31% 49% 27% 26% 16% 16%

244.8 m 399 s/m 25% 399 s/m 25% 4% 4% 4% 17% 18% 9% 10% 7% 7%

734.4 m 310 s/m - 310 s/m - - - - - - - - - -

Among the FEST-EWB results, components of the energy balance for every pixel are available. A comparison with the
quantities measured by the eddy-covariance instrument can be performed with the FEST-EWB outputs for the station own
pixel and those extracted employing the eddy footprint. In the lower panels, Net Radiation (Rn) and Soil Heat Flux (G) are
compared, with positive results. In the upper panels, for Latent Heat (L) and Sensible Heat (H), the footprint-filtered FEST-
EWB outputs are shown. The presence of a consistent bare-soil area around the station is evident in the higher values of
the Sensible Heat as opposed to the Latent Heat registered by the station. These dynamics are all well-captured by the
model interpretation. The Table below details the Nash-Sutcliffe Efficiency scores for the flux validation.

Date Latent Heat (footprint) Sensible Heat (footprint) Net Radiation Soil Heat Flux

11th Jun 0.486 0.847 0.916 0.864 0.897 0.699

3rd Jul 0.814 -0.410 0.885 0.770 0.940 0.647

22nd Aug 0.749 0.143 0.700 0.545 0.967 0.888

3rd Sep 0.014 -1.870 0.746 0.731 0.929 0.650

Model validation
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Model calibration

The comparison between the two approaches is investigated also in terms of daily evapotranspiration, focusing on
the main vineyard area. The golden bar identifies the calibrated-model ET result for the native resolution (1.7m); the
green bar identifies the Upscaled Outputs approach result, while the orange one the Upscaled Inputs result. The UO
and UI results are never equal, but they are fundamentally never far from each other. Varying on the days, the
differences can be more or less marked, but the overall value is similar, with no clear over-estimation of one over the
other. Furthermore, both values are generally in the vicinity of the daily evapotranspiration computed at the highest
resolution. The highest (10.2m) and lowest (734.4m) resolutions are the best-performing ones, but the global results
do not seem to depend on the selected spatial resolution.

6. Discussion

The calibration of the model has been performed through the minimization of
the average model error between modelled Representative Equilibrium
Temperature (RET) and remotely-sensed Land Surface Temperature (LST). As the
simulations are performed in summer days with no water input and in a
restricted time span, the selected calibration parameters are the minimum
stomatal resistance (rsMIN) and the soil surface resistance (rS), given their strong
link to the energy partition mechanisms. The calibration/validation process is
synchronous, since calibration (LST) and validation (energy fluxes) data are
obtained from independent sources.
Eddy-covariance data are influenced by the aerodynamic conditions of the
atmosphere bottom layer. Depending on the spatial resolution, measurement
footprint computation may be required to aptly simulate the measurement
performed by the instrument.

1. Model outputs (L, H, SM and RET) are upscaled to some specific spatial
resolutions.

2. Model input data is upscaled to the same resolution before running the
FEST-EWB, which is calibrated anew for each run.

3. Model results, either originated from the upscaling of the native-resolution
results (Upscaled Outputs, UO) or after the model calibration employing
upscaled input data (Upscaled Inputs, UI), are compared

The scales have been chosen by similarity with some common satellite data:
10m for Sentinel, 30m for Landsat, 250m for MODIS VIS, 1km for MODIS TIR. To
avoid reprojections, the actual analysis scales are multiples of 1.7m: 10.2m,
30.6m, 244.8m and 734.4m. The upscaling has been performed through
successive averaging of the original data to the target resolutions.
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2c. Methods 

The FEST-EWB distributed hydrological model [3] closes the water and energy 
balances pixel by pixel, computing the superficial runoff and routing the water 
through the hydrological network.

Scale analysis

The plots in Section 5b exemplify the strong model independence from spatial resolution. The strikingly similar surface
temperature distributions between UO and UI model runs proves that similar results can be obtained by the model
independently of the input data resolution. This is exceptionally interesting provided the high-heterogeneity of the test
area. A step forward in this conclusions is brought on by the global ET bar graphs. Apart from minor differences, the
global evapotranspiration of the vineyard is practically the same, be it computed from aggregated high-resolution data
or low-resolution information. This flexibility of the model allows to obtain good ET numbers even employing low-
resolution data, which commonly are cheaper and easier to retrieve. From an irrigation water management
perspective, this means being able to enforce a continuous and accurate control over the crop with moderate costs.

Min. Stomatal Res. Soil Surface Res.

127 s/m 59% 500 s/m 0%

579 s/m 63% 603 s/m 63%

410 s/m 51% 407 s/m 52%

355 s/m 58% 355 s/m 58%

399 s/m 25% 399 s/m 25%

310 s/m - 310 s/m -

RET (UI) RET (out L (UI) Lout H (UI) Hout SM (UI) SMout

- - - - -

15% 15 63% 34% 26%

13% 12% 34% 57% 22% 30% 19% 20%

11% 10% 31% 49% 27% 26% 16% 16%

4% 4% 17% 18% 9% 10% 7% 7%

- - - - - - - -

RET (UO) L (UO) H (UO) SM (UO)

- - - -

15% 63% 34% 26%

12% 57% 30% 20%

10% 49% 26% 16%

4% 18% 10% 7%

- - - -

Daily evapotranspiration maps are shown below, highlighting clearly the vegetated/non-vegetated patterns in the main
experimental area. Warmer days (July) show an overall higher ET output than early (June) or late (September) Summer.
These outputs are critical for the definition of the field irrigation water requirement.

Average value and Variation Coefficient (VC) of the 
calibration parameters for the UI process across all scales.

Scale variability of the LST data and the UI and UO versions of four FEST-EWB outputs – Representative Equilibrium Temperature (RET), 
Latent Heat (L), Sensible Heat (H) and Soil Moisture (SM) – expressed in terms of Variation Coefficient (VC)

2a. Case Study 

The study area is the experimental vineyard field
of the Tenute Rapitalà farm in the territory of
Camporeale (Sicily). Data refers to the Jun-Sep
2008 DIFA field campaign [1]. The yellow-
bordered area identifies the main experimental
field, hosting the eddy-covariance station. The
vine rows are 2.4m apart and in each row the
plants are positioned every 0.95m, resulting in a
global plant density of 4386 plants per ha. The
terrain shows a mild slope (<10%), SSW-oriented.
The soil texture is classified as loam. Residual
Water Content is 0.04 m3 m-3, while Saturation
Water Content is 0.45 m3 m-3. Drop irrigation is
the main irrigation practice for the area.

Plant growth is evident in the Vegetation
Fraction, while variations on Albedo are less
marked. Land Surface Temperature (LST)
data highlights the cooler water basins
against the cultivated fields and the
warmer non-vegetated paths (as confirmed
by the vegetation fraction low values).
Some “patchwork” areas with strongly
heterogeneous data can be detected in
22/07 and 22/08. As PS can be obtained by
composition of different overpasses, some
images can create conflicts due to slightly
different atmospheric conditions at the
acquisition times (e.g., some passing
clouds). Finally, a flux tower was located at
the centre of the experimental field [2]. It
provided measurement of air temperature,
humidity, precipitation and energy fluxes:
Net Radiation (Rn), soil thermal flux (G),
latent heat (L), sensible heat (H), available
every 30 mins. The energy balance,
although never closed, presents a good
adaptation (slope=0.95, R2=0.83).

ET estimates across scales using remotely sensed LST and an energy-water balance model 


