Annual to seasonal glacier mass balance in High Mountain Asia from Pléiades stereo images: examples from Muztag Ata (Eastern Pamir) and Western Nyainqentanglha (Tibetan Plateau)

Daniel Falaschi¹, Lei Huang² Atanu Bhattacharya³, Kriti Mukherjee⁴, Owen King¹ Gregoire Guillet⁵, Tobias Bolch¹

¹School of Geography and Sustainable Development, University of St Andrews, UK ²Aerospace Information Research Institute, Chinese Academy of Sciences, China ³Department of Remote Sensing & GIS, JIS University, Kolkata, India ⁴Cranfield University, UK ⁵ Civil and Environmental Engineering, University of Washington, Seattle, WA, USA

Introduction

Glaciers are important sources of fresh water in particular for the arid lowlands surrounding High Mountain Asia. In order to better constrain glacio-hydrological models, annual or even better seasonal information about glacier mass changes is highly beneficial. In this study, we test the suitability of very high-resolution Pleiades DEMs to measure glacier-wide mass balance at annual and seasonal scales in two regions of High Mountain Asia (Mustag Ata massif in Eastern Pamir and parts of Western Nyainqentanglha, South-central Tibetan Plateau) where recent estimates have shown contrasting glacier behaviour (Bhattacharya et al., 2021

Objective

- □ In this study, we aim at providing a recent (2019-2022) glacier geodetic mass balance record of the Muztag Ata and Western Nyainqêntanglha districts at annual to seasonal scale, using 5 Pleiades DEMs over a 3-year period (Fig.1).
- We further aim to compare the geodetic results with ICESAT-2 measurements and a snowline-fed mass balance model.

Figure 1. Location of the study sites in High Mountain Asia Sources: Holzer et al. (2015), Bolch et al. (2010).

Methods

- Pleiades DEMs with 4 m spatial resolution are build using the NASA Ames Stereo Pipeline (ASP, Shean et al., 2016).
- □ DEMs are coregistered (Nuth and Kääb, 2011) and subtracted to generate elevation change (*dH*) grids.
- Along- and across-track corrections are applied to remove spatially- dependent biases due to satellite oscillation (Deshamps-Berger et al., 2020) (Fig. 2).

Figure. 2. *dH* maps of Muztag Ata showing the oscillation effect of satellite jitter. (a) DEM mosaicing and differencing **before** coregistration leads to diverse jitter effect on different satellite acquisitions (left and right parts of panel (a). Panel (b) depicts the dH grids **after** bias-correction and final mosaicing.

- Outliers and data voids are removed and filled, respectively (Fig. 3).
- □ Snow and Ice masks are generated using image classification techniques and material densities are applied accordingly (Fig. 4) to obtain the glacier-wide mass balance.

Figure 3. Removal of anomalous cells around data voids and subsequent filling using a 3-pixel buffer (a). Whilst outliers remain, a larger buffer will remove valid cells (b).

Figure 4. Supervised classification of ice and snow classes for the 11-20-2020 acquisition over Western Nyainqentanlha.

□ Finally, uncertainties are calculated using the patch method (Wagnon et al., 2021).

Results

- □ Annual mass balance in the Muztag Ata massif between 2019-2020 and 2020-2021 were -0.24 ±0.19 m w.e. a⁻¹ and +0.17 ±0.35 m w.e. a⁻¹, respectively.
- On the contrary, annual mass balances in the Western Nyainqentanglha range for similar periods show highly negative conditions (-0.87 ±0.22 m w.e. a⁻¹ and -0.52 ±0.11 m w.e. a⁻¹).

Figure 6. 2019-2022 *dH* maps over Muztag Ata at annual (a-b) and seasonal (c-d) scale.

Discussion

- □ In the Western Nyainqentangla range, the 2019-2020 and 2020-2021 mass budgets suggest much higher mass loss rates when compared to the previous six decades.
- With some limitations due to the high uncertainty, the Western Nyainqentanlha winter mass balance estimate (-0.05 ±0.70 m w.e. a⁻¹) does not show any mass recovery.
- The mass balance estimates between 2019 and 2021 for the Muztag Ata massif suggest a greater variability in mass budget than previously acknowledged in the region.
- □ In addition, the 2022 winter (+0.17 ±0.64 m w.e. a⁻¹) and summer (-0.89 ±0.41 m w.e. a⁻¹) budget provides provisional evidence for a winter accumulation regime, though mass balance uncertainties are high.

Conclusions

- In this study, we have evaluated the capability of very highresolution Pleiades DEMs to quantify annual and seasonal mass balance in selected sites of High Mountain Asia using the geodetic method.
- Sources of uncertainty include the DEM quality, the ability to consistently map snow and ice areas on glacier surfaces, density assumptions as direct measurements are unavailable.
- Whilst the Pleiades DEMs have proven suitable to quantify both annual and seasonal mass balances, associated uncertainties are high in some cases.
- Further work will focus on using additional data (such as ICESat-2) and methods (such as snowline-derrived mass balance estimates) to reduce the uncertainty

References

Bhattacharya et al. (2021). High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. *Nature Communications*, *12*(1), 4133.

Deschamps-Berger et al., (2020). Snow depth mapping from stereo satellite imagery in mountainous terrain: Evaluation using airborne laser-scanning data. *The Cryosphere*, *14*(9), 2925–2940 Nuth and Kääb. (2011). Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. *The Cryosphere*, *5*(1), 271–290..

Shean et al., (2016). An automated, open-source pipeline for mass production of digital elevation models (DEMs) from veryhigh-resolution commercial stereo satellite imagery. *ISPRS Journal of Photogrammetry and Remote Sensing*, *116*, 101–117. Wagnon et al.,(2021). Reanalysing the 2007–19 glaciological mass-balance series of Mera Glacier, Nepal, Central Himalaya, using geodetic mass balance. *Journal of Glaciology*, *67*(261), 117–125.

Figure 5. 2019-2022 dH maps over the Western Nyainqentanglha range at annual (a-b) and seasonal (c) scale.

University of St Andrews

MOUNT

CRYO

