

HJ-1AB

2022 DRAGON 5 SYMPOSIUM MID-TERM RESULTS REPORTING 17-21 OCTOBER 2022

TITLE

entinel-3

CRYOSPHERE-HYDROSPHERE INTERACTIONS OF THE ASIAN WATER TOWERS: USING REMOTE SENSING TO DRIVE HYPER-RESOLUTION ECOHYDROLOGICAL MODELLING

Dragon 5 Mid-term Results Project

THURSDAY, OCTOBER 20TH 2022

ID. 59199

PROJECT TITLE: CRYOSPHERE-HYDROSPHERE INTERACTIONS OF THE ASIAN WATER TOWERS: USING REMOTE SENSING TO DRIVE HYPER-RESOLUTION ECOHYDROLOGICAL MODELLING

PRINCIPAL INVESTIGATORS: FRANCESCA PELLICCIOTTI (WSL), MASSIMO MENENTI (CAS – AIR)

CO-AUTHORS:EVAN MILES , SHAOTING REN, PASCAL BURI, JING ZHANG, ACHILLE JOUBERTON, JUNRU JIA, THOMAS SHAW, LIAN LIU, MIKE MCCARTHY, QIUXIA XIE, STEFAN FUGGER, CATRIONA FYFFE, YUBAO QIU AND LI JIA

PRESENTED BY: MASSIMO MENENTI

Objectives

Document and understand the drivers of blue and green water flows at high elevation:

- > Understand cryospheric, vegetation and land surface changes
- > Generate glacier-specific altitudinal surface mass balance profiles
- > Model land-surface interactions across the cryosphere, hydrosphere and biosphere

Albedo and mass loss in the Western Nyainqentanglha

- New method to retrieve glacier daily albedo using MODIS data;
- Terrain slope and aspect; snow and ice BRDF anisotropy correction.
- Evaluation of response to rainfall, temperature and PM 2.5: trends,seasonality, spatial variability and elevation

(Ren et al., 2021)

- High spatial resolution ZiYuan-3 (ZY-3) Three-Line-Array (TLA) stereo images to retrieve glacier mass balance;
- ZY-3 TLA: higher point cloud density and less invalid data;
- High resolution (5 m) glacier mass balance map;
- Geodetic mass balance of representative glaciers in WNM and ENM
- > 2000–2013, 2013–2017 and 2000–2017

Albedo and mass loss in the Western Nyainqentanglha

Dragon 5 Mid Term Symposium - October 17 - 202022

Simultaneous retrieval of AOD and surface BRDF: components of at-surface irradiance

- Accurate knowledge of the magnitude and angular dependence of downwelling radiance necessary to retrieve both surface reflectance and AOD
- Increasing scattering increases path-radiance and modifies the angular dependence
- Terrain irradiance at a facet increases with increasing scattering

The first

step

Simultaneous retrieval of AOD and surface BRDF

- Scattering increases with increasing AOD
- Diffuse irradiance increases
- > Et increases \rightarrow larger fraction of total irradiance.
- > Impact of AOD depends on adjacent terrain

- Accuracy lower at intermediate cloud fraction
- Impact of fragmented clouds difficult to parameterize
- Larger fraction of direct and circum-solar
- Dragonacivadneen Symposium October 17 20 2022

Glacier flow velocity

a 300

- Updated maps of glacier surface velocity in the Parlung Zangbo Basin;
- Glacier motion mechanisms using central flowline and transversal velocity profiles of four typical glaciers
- glacier velocity patterns vs.
 topographic profiling and glacier
 thickness analyses
 S2 •L8

Distance from terminus (m)

220 30

(Zhang et al., 2021 a)

Annual mean centerline glacier velocity (blue line) versus glacier thickness (red line) versus slope (green line): (a) Yanong Glacier (b) Parlung No. Glacier (c) Azha²and (d) Xueyougu Glacier

A dataset of Landsat 8 snow coverage in the Himalayas from 2013 to 2020

RSCC

Evaluation against snow cover classification of Sentinel-2 MSI within a grid of 900×900m? correlation coefficient > 0.95, RMSE = 0.1%

Glacier Area and Seasonal Snow Cover Changes in the Tarim basin - 2013 to 2020

- Thresholding the NDSI to extract annual glacier area and snow cover
- MODIS Surface Reflectance 8-Day product (MOD09A1)
- Multiple snowfall and snowmelt events → intermittent snow cover → discriminate snow and glacier.
- Glacier outlines 2000, 2005, 2010, 2015 and 2020)
- Glacier area decreased 7975.71 km2 from 2001 to 2020; annual rate of change – 0.94 %

(Zhang et al., 2021 b)

(b)

(d)

- **PMW: Passive MicroWave** \geq
- LIP: Lake Ice Phenology \triangleright

22 Lakes 1978 to 2021

- 87 Lakes 2002 to 2021
- Freeze Onset (FO), Complete Ice \geq Cover (CIC), Melt Onset (MO), and **Complete Ice Free (CIF) dates**

(c)

Arctic Circle

180.1 - 215.6

120.1 - 150.0

11

Dragon 5 Mid Term Symposium -20 ctober3317350.20-20.22 9 310.1 - 330.0

140 1 - 180 (

NRSCC

Soil Moisture Data Fusion by Triple Collocation Analysis - 2011 to 2018

Glacier-specific altitudinal surface mass balance

Modelled water balance partition

7000

<u>;</u> 6000

Elevation 0005

ΕI

Rain

Ice melt Snow melt

Importance of latent heat fluxes for the water balance of a high elevation catchment

- Land surface modeling reveals high altitudinal/subseasonal variability in water balance partitioning in a glacierized Himalayan catchment
- Water loss through snow sublimation, evaporation and transpiration exceeds water production from glacier melt by 54% at the catchment scale
- LE fluxes are particularly important for the catchment water balance above 6500 m (snow sublimation) and below 4500 m (transpiration)

Glacier-specific altitudinal surface mass balance

(McCarthy et al., accepted)

Supraglacial debris thickness and supply rate in High-Mountain Asia

- Also estimated the rate of supply of debris to glaciers in the region from glacier headwalls
- > This is highly spatially variable
- Debris-supply rates are interestingly an order of magnitude or more lower than erosion rates measured using 10-Beryllium isotopes, likely because debris supply is highly episodic

Glacier-specific altitudinal surface mass balance

(McCarthy et al., accepted

Supraglacial debris thickness and supply rate in High-Mountain Asia

- Supraglacial debris thickness was estimated across High-Mountain Asia using a combination of remote sensing and energy-balance modelling techniques
- High spatial variability in supraglacial debris thickness
- Majority of the region's debris is relatively thin (>50% < 0.1 m)</p>
- Debris thickness increases with fractional debris-covered area and 'stage' of debris evolution

Dragon 5 Mid Term Symposium - October 17 - 20 2022

Improved Noah Snow Albedo Scheme in the Simulation of Snow Processes

- Ingestion of MODIS albedo improved performance WRF + Noah
- NEW scheme MODIS albedo vs. model snow depth, age, fresh snow albedo, snow free albedo (background abedo)
- MODIS albedo: is it good enough?

Noah default

$$\alpha_{\rm snow} = \alpha_{max} \times A^{t^B}$$
$$\alpha = \alpha_{bg} + sc \times (\alpha_{\rm snow} - \alpha_{bg})$$

New parameterization

$$\alpha_{\text{snow}} = 0.13 + 0.66e^{\left(\frac{t}{1.38}\right)}$$
$$\alpha = \alpha_{\text{snow}} + (0.19 - \alpha_{\text{snow}})e^{\left(\frac{-d}{0.11}\right)}$$

 α_{snow} = snow albedo α_{max} = fresh snow albedo t = snow age (days) α_{bg} = background albedo α = albedo (MODIS; WRF+Noah) d = snow depth (m)

Improved Noah Snow Albedo Scheme in the Simulation of Snow Processes

Importance of vapour fluxes for the water balance of a high elevation catchment

- Application of Land Surface Model of very high spatial, temporal and physical detail to simulate the glacierized Langtang catchment (Nepal)
- Model evaluation against various EO datasets:
- snow covered area (MODIS), leaf area index (VIIRS), land surface temperature (ECOSTRESS), glacier albedo (Sentinel2/Landsat8), glacier mass balance (Pléiades)

Understanding the causes of high glacier mass losses in the Tibetan Plateau

- Long term simulations of glacier mass balance and runoff, Parlung catchment, Eastern Tibetan Plateau
- Temperature increase (mean of 0.39 °C · dec-1 since 1990) has accelerated mass loss rates by altering both the ablation and accumulation regimes, in particular reducing monsoon snowfall
- Higher solid precipitation in spring (+18%) during the last two decades was increasingly important in mitigating glacier mass loss by providing mass to the glacier and protecting it from melting in the early monsoon

(Jouberton et al., 2022, PNAS

Understanding the causes of high glacier mass losses in the Tibetan Plateau

- Bare ice is exposed to warmer temperatures for longer periods;
- Ice melt and catchment discharge have unsustainably intensified since the start of the 21st century, raising concerns for long-term water supply and hazard occurrence in the region.
- Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau

EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert "ftp"

ESA	No. Scenes	ESA Third Party Missions	No. Scenes	Chinese EO data	No. Scenes
1 5-1	30	1. Pléiades	16	1. FY3C	500
2 5-2	82	2. SPOT	10	2. SDGSAT-1/TIS	165
2.52	500	3. Deimos	2	3. SDGSAT-1/GIU	95
	10	4. L5,7,8	75	4. GF-3	ftp
	500	5. PlanetScope	100	5. GF-1/2/4/6	ftp
S. ASCAT	500		ftn	6. CBERS-01/03	ftp
6. AMSR-E Enhanced data	np	6. SMINIR Enhanced data	ntp n	7. ZY-3 TLA	14
7. AMSR-2 L1 data	ftp	7. MWRI L1 data	ftp	8.	
8.		8. SSM/I Enhanced data	ftp	9.	
9.		9. MODIS	1700	10	
10.		10. CALIOP	1507	11	
11.		11. ASTER GDEM	1	II. Total:	
Total:		Total:		Issues	
lssues:		Issues: Dragon 5 Mid Term Symposium - October 1	17 - 20 2022	1350053.	21

GNRSCC In-situ measurements and campaigns

Equipment	Institution	Measurements	Application	Period
Camera	AIR	Colour images	Glacier surface characteristics and flow	1/9/2019 – now
multiple	WSL, ETH	Debris thickness and glacier mass balance	Validation of models and data sets	2020 – 2021
Radiometer s	ITP, AIR	Albedo , AOD	Validation of retrievals	2020 – 2022

European Young scientists contributions in Dragon 5 (eesa

Name	Institution	Poster title	Contribution	
Pascal Buri	WSL	230 Land Surface Modelling in the Himalayas: On the Importance of Evaporative Fluxes for the Water Balance of a High Elevation Catchment	Numerical experiments on glacier response at high spatial resolution	
Achille Jouberton	WSL, ETH	232 Combining High Resolution Atmospheric Simulations And Land-surface Modelling To Understand High Elevation Snow Processes In An Himalayan Catchment	Numerical experiments at high spatial resolution combined with EO data analyses	
Michael McCarthy	WSL	233 A New Dataset of Supraglacial Debris Thickness for High- Mountain Asia	Integration of glacier flow modelling with satellite data to generate data set on debris thickness	
Evan Stewart	WSL	251 Applications of the Continuity Equation to Derive Targets for Glacier Models	Accurate mass balance of glaciers at high spatial resolution by integrating model and RS data	
		Dragon 5 Mid Term Symposium - October 17 - 20 2022	23	

Chinese Young scientists contributions in Dragon 5

Name	Institution	Poster title	Contribution
Shaoting REN	AIR – CAS, ITP – CAS	Decreasing albedo led to mass loss in the Western Nyainqentanglha Mountains during the past 20 years	225 Development and implementation of algorithms; data analysis
Junru JIA	AIR – CAS	A method of joint retrieval of AOD and surface BRDF	Development, integration, testing of algorithm; data collected in the Tibetan Plateau
Lian LIU	ITP – CAS	Application of an Improved Noah Snow Albedo Scheme in the Simulation of Snow Processes over the Tibetan Plateau	136 Parameterization of the dependence of albedo on snow age and depth; implementation and experiments with Noah
Jing ZHANG	AIR – CAS	Annual Glacier Area and Seasonal Snow Cover Changes in the Range System Surrounding Tarim from 2000 to 2020	229 Development, integration, testing of algorithm; data collected in the Tibetan Plateau
Qiuxia XIE	AIR – CAS	Global Soil Moisture Data Fusion by Triple Collocation Analysis from 2011 to 2018 Dragon 5 Mid Term Symposium - October 17 -	227 Improvement of algorithm and application to generate a global data set; evaluation with ground measurements Tibetan Plateau

Exchange visits 2023 - 2024

Name	Institution	Host	Торіс
Dr. Qiuxia XIE	Shandong Jianzhu University	TU Delft	Retrieval of soil moisture in the Tibetan Plateau: spatial patterns and trends
Dr. Chaolei Zheng	AIR – CAS	TU Delft	Multi-source retrieval of vapour fluxes in high elevation, cold regions
Dr. Miin Jiang	AIR – CAS	TU Delft	Time series analysis on forcing – response in land surface processes

