

The Maximum Wave Height Acquisition from CFOSAT SWIM Based on Machine Learning

WANG Jiuke, AOUF Lotfi

National Marine Environmental Forecasting Center, Meteo France 2022.10.19 Dragon 5 Mid-term Symposium

Motivation: Urgent demand for operational marine forecasting

- Max wave height (MaxH) is dangerous for ships or marine structure, NMEFC now starts to concern.
 MaxH is also a crucial symbol of "Freak Wave".
- However, MaxH is seriously lack of observation, especially globally.
- MaxH can be obtained from wave model but from empirical methods.

Objectives and Method

The objective: obtain the MaxH based on Along Track observation through ML

1) Build ML model to correct ERA5 MaxH against buoy observation (use buoy MaxH as truth);

The Method:

- 2) Correct ERA5 MaxH using ML, and collocate HY2/CFOSAT with ERA5
 - 3) Build ML model 2 to obtain MaxH from satellite parameters (use corrected ERA5 as truth)
 - 4) So ML 2 is the model to obtain MaxH from satellite.

MaxH Assessment against French Buoy

ERA5 MaxH Correction from DNN and Random Forest

DNN and RF MaxH Correction Comparisons on Test Datasets

Variables

Input Importance							
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0	MaxH Tmax Swell Tm Tm-Swell BFI Tm-Windsea Mean Square Slo Tp SWH-Windsea Spectral Directio Wave Spectral K Wave Wpectral F Wave Spectral S 0.2 0	ope of Waves nal Width urtosis Peakedness kewness 4 0.6 /ariable Impor	0.8 tance	1			
	Bias	RMSE	RE	SI			
ERA5	0.563	0.851	21.2%	20.7%			

	Bias	RMSE	RE	SI
ERA5	0.563	0.851	21.2%	20.7%
RF	-0.015	0.591	13.0%	19.1%
DNN	0.002	0.563	12.5%	18.2%

SWIM MaxH Assessment Against Corrected ERA5 MaxH

CFOSAT MaxH Assessment Against FRA/CHN Buoy

Bias = -0.223

RMSE = 0.762

RE = 11.6%

SI = 18.7%

Δ

16

14

RF SWIM MaxH (m) 9 8 01 (m)

0

2

RF SWIM MaxH

FRA Buoy

14

16

12

10

• The training dataset is in 2019-2020

• While the assessment is done based on the data in 2021

6

8

FRA Buoy MaxH (m)

SWIM "Freak Wave" Occurrences (Ration>2 & SWH>2)

Thank you very much!

Suggestions and comments are extremely welcome

WANG Jiuke, AOUF Lotfi

National Marine Environmental Forecasting Center, Meteo France 2022.10.19 Dragon 5 Mid-term Symposium