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Multi-dimensional, long-term time series displacement monitoring is crucial for generating early warnings for active landslides
and for mitigating geohazards. The synthetic aperture radar (SAR) interferometry method has been widely applied to achieve
small-gradient landslide displacement monitoring; however, measuring the landslide displacement with a steep gradient has
posed certain challenges. In comparison, the SAR offset tracking method is a powerful tool for mapping large-gradient landslide
displacement in both the slant-range and azimuth directions. Nevertheless, there are some limitations in the existing SAR offset
tracking approaches: (i) the measurement accuracy is greatly reduced by the extreme topography relief in high mountain areas,
(ii) a fixed matching window from expert experience is usually adopted in the calculation of cross-correlation, (iii) estimating the
long-term displacements between the SAR images from cross-platforms and with longer spatiotemporal baselines is a chal-
lenging task, and (iv) it is difficult to calculate the three-dimensional (3D) landslide displacements using a single SAR dataset.
Additionally, only a few studies have focused on how to realize early warning of landslide deformation using SAR measure-
ments. To address these issues, this paper presents an improved cross-platform SAR offset tracking method, which can not only
estimate high-precision landslide displacements in two and three dimensions but also calculate long-term time series dis-
placements over a decade using cross-platform SAR offset tracking measurements. Initially, we optimize the traditional SAR
offset tracking workflow to estimate high-precision ground displacements, in which three improvements are highlighted: (i) an
“ortho-rectification” operation is applied to restrain the effect of topography relief, (ii) an “adaptive matching window” is
adopted in the cross-correlation computation, and (iii) a new strategy is proposed to combine all the possible offset pairs and
optimally design the displacement inversion network based on the “optimization theory” of geodetic inversion. Next, robust
mathematical equations are built to estimate the two-dimensional (2D) and 3D long-term time series landslide displacements
using cross-platform SAR observations. The M-estimator is introduced into the 2D displacement inversion equation to restrain
the outliers, and the total least squares criterion is adopted to estimate the 3D displacements considering the random errors in
both the design matrix and observations. We take the Laojingbian landslide, Wudongde Reservoir Area (China), as an example to
demonstrate the proposed method using ALOS/PALSAR-1 and ALOS/PALSAR-2 images. The results reveal that the proposed
method significantly outperforms traditional methods. We also retrieve the movement direction of each pixel of the Laojingbian
landslide using the proposed method, thus allowing us to understand the fine-scale landslide kinematics. Finally, we capture and
analyze the acceleration characteristics of the landslide, perform an early warning of hazard, and forecast the future displacement
evolution based on the 3D displacement time series coupled with the physical models of the rocks.
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1 Introduction

Landslides are major natural hazards that result in thousands
of casualties and property damages worth tens of billions of
United States dollar every year [1]. Thus, monitoring the
displacements of active slopes for investigation, early
warning, and mitigation of landslide hazards is of great re-
search significance [2,3]. Due to its all-weather and large
spatial coverage capability, interferometric synthetic aper-
ture radar (InSAR) has been extensively used to detect and
monitor landslide hazards [4,5]. InSAR can quantify land-
slide displacements along the line-of-sight direction with a
spatial resolution of meters to tens of meters and an accuracy
of a centimeter to millimeter scale under favorable condi-
tions. However, the conventional InSAR method suffers
from the limitation of rapid decorrelation in areas with dense
vegetation and large-gradient displacements, thus restricting
its application to the mapping of slow-moving landslides
(i.e., displacement rates slower than ~1 m/year) with sparse
vegetation [3,6]. When landslide movement is too fast to be
measured by InSAR methods, the SAR offset tracking (also
sometimes known as sub-pixel image correlation) method
offers an alternative method [2,7]. This method measures
ground displacement by cross-correlating two images based
on the amplitude information and provides two-dimensional
(2D) displacement measurements in both the azimuth and
slant-range directions with an accuracy of approximately
1/10–1/30 pixels [8,9]. Currently, various SAR offset
tracking methods, such as PO-SBAS [8], PTOT [10], and
SPOT-CR [6], have been developed to monitor large ground
displacements associated with glacier movements [11],
earthquakes [12], underground mining [9,13], and landslide
activity [14–16], among others.
However, there are still some shortcomings in existing

SAR offset tracking approaches, particularly in terms of
characterizing long-term (>10 years) landslide displace-
ments with slow movement velocity (the magnitude of sub-
meter to meter scale per year) in areas with steep topography
and dominated by distributed scatterers. Thus, the traditional
workflow for SAR offset tracking measurements must be
improved. First, extreme topography relief in the high
mountains can lead to pixel misalignments between the
primary and secondary SAR images [17], thus raising severe
systematic offset errors in the displacement results. A critical
step is to remove topographic offset errors to accurately es-
timate landslide displacements. Most of the existing studies
[2,18] restrain such errors by setting the thresholds of the

spatiotemporal baselines (i.e., long temporal baseline and
short spatial baseline or short spatiotemporal baselines).
Consequently, the number of offset pairs is often limited by
the SAR images obtained from previous satellites, such as
ALOS/PALSAR-1. In comparison, seasonal or annual offset
pairs are of significant value for accurately modeling the
landslide displacement patterns, despite having larger spa-
tiotemporal baselines. Second, as the core idea of the SAR
offset tracking method is the normalized cross-correlation
(NCC) calculation [19], a regular window size is exploited to
calculate the NCC coefficient between two image patches
and determine the maximum correlation in most previous
studies (e.g., refs. [8,18]). Yet, the estimated offsets may be
biased and even vary randomly when the samples in two
image patches are not homogenous [20,21]. In other words,
the accuracy of the estimated landslide displacement can be
affected by the fixed window size in the mountainous areas.
Thus, the adaptive selection of the window size is of great
significance in improving the accuracy of the SAR offset
tracking-retrieved displacements. Third, in retrieving the
long-term displacement time series of slow-velocity land-
slides over a decade, offset pairs with larger temporal base-
lines and even from cross-platform SAR observations (e.g.,
ALOS/PALSAR-1 and ALOS/PALSAR-2 images) must be
included. In this case, the outliers caused by low correlations
will inevitably appear in the estimated offset measurements.
However, most state-of-the-art time series SAR offset
tracking methods [2,18,22,23] can hardly deal with this
problem.
Thus, identifying the optimal selection of offset pairs, as

well as the best design of the geometry of the displacement
inversion network, is important for time series inversion. A
network with less redundancy of offset pairs can increase the
uncertainty in the estimated displacement parameters
[24,25]. Related to this, two different strategies for the
generation and selection of offset pairs have been proposed
and applied in previous studies [2,18,26]. First, offset pairs
are created using a small baseline subset strategy [18,26].
Although the pairs with small spatiotemporal baselines can
maintain a higher correlation, it may lead to an error accu-
mulation in the displacement time series, particularly in
slow-moving landslides where insufficient displacement
exists [2,27]. Thus, balancing the spatiotemporal baselines is
essential and should depend on the landslide displacement
magnitude [27]. The second option is to combine offset pairs
using a strategy of a small spatial baseline and a large tem-
poral baseline [2]. However, such a strategy has a very
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limited application because of SAR images acquired from
previous satellites, such as ALOS/PALSAR-1. More im-
portantly, higher degrees of redundancy were not exploited
in the two strategies mentioned above when estimating the
displacements. As mentioned previously, the optimal selec-
tion of offset pairs and the optimal design of the geometry of
the displacement inversion network are critical in ensuring
the accuracy and reliability of the estimated displacements
[27], in which the three criteria of precision, reliability, and
computational cost should be considered. Related to this, the
more mature optimal design of the network in the geodesy
field [28] can provide great inspiration for the offset tracking
community.
Furthermore, three-dimensional (3D) deformation fields

can provide particular clues for understanding the type,
failure mode, and subsurface sliding geometry of active
landslides [22,29]. The 2D displacement field of the actively
moving part of a landslide can be estimated by the SAR
offset tracking method using single-orbit SAR data, thus
making it possible to invert 3D displacements using SAR
images from two or more observations with diverse imaging
geometries [2,30]. However, multi-orbit satellite SAR ob-
servations are usually difficult to satisfy in most areas on
Earth [11]. Thus, another alternative solution for retrieving
3D deformation is to add a priori information of landslide
movement to reduce the degrees of freedom [30], when only
a single-orbit SAR dataset is available. In the case of land-
slides, an acceptable assumption is that landslides move
parallel to their ground surface; thus, by adding a parallel
displacement constraint to SAR offset measurements, the 3D
displacements can be estimated. The feasibility and accuracy
of this approach have been demonstrated and assessed by
studies on landslides and glaciers using ascending and des-
cending InSAR measurements [31,32]. Notably, the esti-
mated 3D displacements from this approach may be biased in
the case of errors in the external digital elevation model
(DEM). Thus, to address the bias caused by inaccurate
DEMs, a robust estimation method for 3D landslide dis-
placements should be explored.
Herein, we propose an improved cross-platform SAR im-

age offset tracking approach for long-term monitoring 2D
and 3D landslide displacements over a decade. This algo-
rithm has the ability to monitor landslides that are placed on
the rugged mountain areas using SAR images both from an
identical platform and a cross-platform. To this end, with the
goals of increasing the cross-correlation values between the
SAR images with large spatiotemporal baselines and im-
proving the precision of the offset measurements, we im-
proved the traditional SAR offset tracking workflow by
adding “ortho-rectification” operation before cross-correla-
tion computation and adopting an adaptive matching window
when conducting cross-correlation calculation. The pixel
misalignments resulting from the topography relief can be

compensated by the “ortho-rectification” operation, thus al-
lowing for the precise co-registering of the SAR images.
Then, we developed a new strategy for combining offset
pairs and optimally designing the geometry of the displace-
ment inversion network based on the theory of optimization
and design of the geodetic network. Next, the robust esti-
mation algorithms, namely, M-estimator and total least
squares (TLS) estimator, were introduced to restrain the
outliers and deal with the inaccurate DEM in 2D and 3D
displacement time series inversion of landslides. We applied
the developed procedure to monitor the nearly 13-year 2D
and 3D displacements of the Laojingbian landslide located in
the Wudongde Reservoir Area, Jinsha River, China, using
SAR images acquired from cross-platform ALOS/PALSAR-
1 and ALOS/PALSAR-2 sensors between August 2007 and
May 2020. In particular, we performed an early warning and
displacement forecasting of the landslide by fusing the es-
timated 3D long-term displacement time series and the uni-
dimensional constitutive models of rocks. Then, from such
information, we inferred the possible impacting factor for
landslide activity using the residuals of modeled displace-
ments from unidimensional constitutive models of rocks.

2 Methodology

The components of the proposed workflow are shown in
Figure 1, where the light orange rectangles indicate the focus
and improvements in this study, and the light blue rectangles
are the standard procedures in SAR offset tracking compu-
tation. The proposed procedure focuses on the three short-
comings of traditional SAR offset tracking methods in the
time series displacement mapping of slow-velocity land-
slides, especially in complex areas, such as rugged mountain
areas, steep terrains, and non-homogenous targets. For the
first solution, the ortho-rectification of the SAR images was
added to remove topographic relief effects and achieve ac-
curate co-registration of SAR images from identical and
cross platforms. Second, adaptively varying windows were
introduced into the cross-correlation computation to avoid
the bias caused by non-homogenous samples in two image
patches, thus improving the accuracy of the azimuth and
slant-range offset measurements, particularly for offset pairs
with longer spatial baselines. Third, high-quality offset pairs
were optimally selected to design the network of displace-
ment inversion based on the measurement uncertainties and
the theory of optimization and design of geodetic networks.
Fourth, the mathematical equation of 2D displacement rates
and time series inversion was established using the designed
network, into which the M-estimator [33] was introduced to
restrain the outliers caused by low correlation. Next, the 3D
displacement inversion based on the surface-parallel flow
model [31] and the estimated 2D displacements were fol-
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lowed. The TLS algorithm was applied to estimate the 3D
displacement rates and time series, given that random errors
exist not only in the observations but also in the coefficient
matrix (caused by inaccurate DEM). Finally, we retrieved the
sliding direction of each pixel of the landslide using the
derived horizontal displacement rates, conducted an early
warning of landslides using 3D long-term displacement time
series, and further forecasted the temporal evolution of
landslide displacement in the following five years based on
the unidimensional constitutive models of rocks. The dif-
ferent steps of the procedure are described in detail in the
following subsections.

2.1 Ortho-rectification and accurate co-registration of
SAR images

A stringent prerequisite in SAR offset tracking estimation is
the accurate co-registration between primary and secondary
images, because the accuracy of SAR offset tracking-derived
displacement is subject to the co-registration accuracy. Pre-
vious studies [17,34,35] have demonstrated that topographic

relief can lead to pixel misalignments in SAR images, which
can significantly decrease the precise registration of SAR
images. For offset pairs with a smaller spatial baseline and
moderate topography, the offset errors arising from topo-
graphic relief can be neglected [2,18,35]. However, such
potential errors must be considered for offset pairs with
longer spatial baseline and rugged terrains [23,34,35], par-
ticularly for offset pairs from the cross-platform (e.g.,
ALOS/PALSAR-1 and ALOS/PALSAR-2). In the current
work, a pre-processing step, namely “ortho-rectification,”
based on the SAR imaging geometry and external DEM
[23,35], is conducted to remove the topographic relief ef-
fects. Then, the primary and secondary images are accurately
co-registered based on the ortho-rectified SAR images. The
rationale and procedures are described as follows [23,34,35].
(i) The optimal primary images within SAR images from

an identical platform and cross-platform were determined
based on Doppler central frequency variations and spatio-
temporal baselines. Then, based on the SAR imaging geo-
metry and the external DEM, the direct functions that record
the location of each pixel in the primary image to a corre-
sponding pixel position in the secondary image were estab-
lished.
(ii) The established functions were refined to deal with the

bias caused by errors in the orbital state vectors of the SAR
images and the external DEM.
(iii) The rectified SAR images were further obtained by

resampling all the secondary SAR images to the frame of the
primary images based on the refined functions.
To demonstrate the effects of topographic relief and the

necessity of the ortho-rectification operation, four exemplary
offset pairs from an identical platform (ALOS/PALSAR-1
and ALOS/PALSAR-1) and the cross-platform (ALOS/
PALSAR-1 and ALOS/PALSAR-2) with extremely large
spatial baselines were selected to illustrate the co-registration
accuracy with and without ortho-rectification, as shown in
Table 1. In the table, we can see that the results with ortho-
rectification operation show improved co-registration accu-
racy and that the accuracies in the azimuth and range di-
rections are all better than 1/10 pixels, even when the spatial
baseline is longer than 100 km.

2.2 Cross-correlation computation with adaptively
varying windows

The accuracy of the SAR offset tracking estimation can be
expressed as [36]

N= 3
2

1 , (1)r a,

2

where r a, is the standard deviation of the offset tracking
estimation, N indicates the number of samples in an image
patch, and is the cross-correlation value of the image patch.

Figure 1 Workflow for the improved cross-platform SAR image offset
tracking approach for monitoring the long-term 2D and 3D landslide dis-
placements. The main focus and contributions of this study are highlighted
in light orange and the standard procedures in light blue.
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Notably, eq. (1) is derived for a homogenous image patch;
that is, the features of the samples in the two image patches
are nearly identical [20]. Therefore, the offset measurement
may significantly vary with the size of the image patch, the
oversampling factor, and the number of samples in areas with
unstable features and should be relatively constant in areas
with stable features [21]. The standard SAR offset tracking
methods typically calculate the offsets using a single fixed
window size, such as 128 × 128 pixels or 64 × 64 pixels,
which are determined empirically. As a result, the estimated
offsets may be largely biased for image patches with low
correlations (e.g., in mountainous areas and in dense
vegetation areas) and with dominant scatterers [12,21]. Thus,
we employed adaptively varying windows to perform
cross-correlation computation between image patches to
avoid biased results in low-correlation scenarios and im-
prove the accuracy of SAR offset tracking estimation. For a
generic given pixel (i), a set of sub-pixel offsets (i.e.,
of of of of of, , , , ,i i i i iN1 2 3 4 ) was estimated by changing the
oversampling factor (e.g., from 2 to 8) and the size of the
image patches (e.g., from 8×8 to 256×256). Considering
computational efficiency, an optimally fixed oversampling
factor was determined in practice. Then, each element in the
set of the estimated offset was arranged according to the
magnitude of the offset values, and the median value was
selected as the final offset for the given pixel (i), thus ef-
fectively restraining the outliers.

2.3 Estimation of the measurement uncertainty

Estimating the measurement uncertainty over a stable area
would be useful in assessing the accuracy of the obtained
displacements in the case of the paucity of in situ measure-
ments [27]. The mean value (MEV) and standard deviation
(STD) are commonly used to estimate uncertainties by re-
searchers [37,38]. The MEV represents a general shift in the
estimated displacement (i.e., systematic uncertainty),
whereas the STD indicates random variations (i.e., stochastic
uncertainty). Based on the law of error propagation, we
calculated the total measurement uncertainty as a function of
the MEV and STD of the displacement over landslide-free
areas. The mean square error (MSE) of the displacement was

estimated using the following equation:

MSE= MEV +STD . (2)2 2

2.4 Optimal selection strategy of offset pairs

We constructed the optimal selection strategy of offset pairs
based on the measurement uncertainties and the theory of
optimization and design of the geodetic network, in which
three criteria (precision, reliability, and computational cost)
were considered. Consequently, our method was oriented
toward selecting high-quality pairs to reduce time costs and
errors, which mainly consisted of three steps, as described
below.
(i) All possible offset pairs were created by merely con-

sidering the temporal baseline, regardless of the spatial
baseline, thus forming highly redundant observations. The
minimum temporal baseline threshold (BT thres) with units of
days is defined as follows:

B PS= def_rate , (3)T thres
off

where PS is the pixel size, off is the measurement accuracy
(~1/10–1/30 pixels) of the offset tracking method, and
def_rate is the daily displacement rate of the landslide.
(ii) After calculating the offsets in the azimuth and slant-

range directions of all generated pairs, the pairs with high
quality were selected for further processing, in which the
pairs with larger measurement uncertainty (MSE) were dis-
carded and those with smaller MSEs were retained.
(iii) The configuration of the selected pairs (i.e., dis-

placement inversion network) was further optimized using
the redundancy numbers (i.e., r-numbers) of the observations
from the geodesy community [39]. In geodesy communities,
r-numbers are generally used as a measure to optimally de-
sign a geodetic network with high reliability [28]. Therefore,
to ensure the high reliability of the displacement inversion
network, we exploited the r-numbers to further optimize the
selected offset pairs. The r-numbers are the diagonal ele-
ments of the matrix R, which can be mathematically written
as [39]

R I A A PA A P= ( ) , (4)
1

Table 1 Co-registration accuracies of primary and secondary images with and without ortho-rectificationa)

Offset pairs Image type TB (d) SB (m) Without (Rg × Az) (pixel) With (Rg × Az) (pixel)

20080829-20110307 A1, A1 920 4641 0.18 × 0.06 0.03 × 0.05

20081014-20110307 A1, A1 874 3714 0.13 × 0.05 0.02 × 0.05

20101205-20141205 A1, A2 1461 109669 0.66 × 0.32 0.07 × 0.09

20110307-20150925 A1, A2 1663 108784 0.32 × 0.19 0.07 × 0.04

a) A1 and A2 represent ALOS/PALSAR-1 and ALOS/PALSAR-2 images, respectively; TB and SB represent temporal and spatial baselines, respectively; and without and with
indicate co-registration accuracy without and with ortho-rectification, respectively.
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where I indicates the identity matrix, A is the design matrix
of the displacement inversion network, and P is the weight
matrix associated with the uncertainty of each observation,
that is, P=diag(1 / MSE , , MSE )M1

2 2 . A smaller r-number
corresponds to an unacceptable offset pair and should be
removed when calculating the 2D and 3D displacements. In
this study, a total of 66 offset pairs were finally selected to
estimate the displacement time series, among which 27 were
from the ALOS/PALSAR-1 dataset, 7 from the ALOS/
PALSAR-1 and ALOS/PALSAR-2 datasets, and 32 from the
ALOS/PALSAR-2 dataset. The spatiotemporal baseline
configurations of the selected offset pairs are presented in
Figure 2. As can be seen, the largest spatial baselines of the

ALOS/PALSAR-1 and ALOS/PALSAR-2 offset pairs
reached 2843 and 250 m, respectively, which are even larger
than 108.5 km between the ALOS/PALSAR-1 and ALOS/
PALSAR-2 images.

2.5 Estimation of 2D displacement rates and time series

After performing the 2D offset calculations of all selected
offset pairs, the observational equation of the 2D displace-
ment inversion can be mathematically written as follows:

AX + V = L, (5)

where

{
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is the observation matrix—that is, the estimated offsets in the
azimuth or slant-range direction; and V is the residual of the
observation matrix. To estimate long-term 2D landslide
displacements, the observations presented in eq. (5) are not
only from an identical SAR platform (i.e., ALOS/PALSAR-1
or ALOS/PALSAR-2) but also from the cross-platform (i.e.,

ALOS/PALSAR-1 and ALOS/PALSAR-2).
In general, the solution of the displacement rate vector X

can be obtained using the least square criterion
(V PV mim= ) as follows [2]:

X = (A PA) A PL. (6)–1

Observations from offset pairs with larger temporal base-
lines were considered to generate the long-term displacement
time series and retrieve the movement of slow-velocity
landslides. However, this may inevitably raise outliers in
offset tracking observations. As the LS method can be easily
affected by outliers in observations, we introduced a robust
estimation [33] to effectively restrain the outliers in ob-
servations. Owing to its high computational efficiency and
better performance in restraining outliers, the M-estimator
[33] was applied to robustly estimate the 2D long-term dis-
placement rates and time series in this study. The optimal
solution of X can be estimated by iterative computation with
variable weights:

X = (A P A) A P L, (7)k +1 k k–1

where P is the equivalent weight matrix of P, which can be
constructed by applying the Huber [33] function, as pre-
sented in eq. (8). The iteration is terminated when it satisfies
the convergence condition of X X| |<k +1 k , where is the
tolerance of the control iteration. Once the robust estimates
of 2D displacement rates are obtained in the azimuth and
slant-range directions between two time-adjacent SAR ac-
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quisitions, the 2D displacement time series at each SAR
acquisition can be calculated using numerical integration:

p
p v

p v v
=

, 2 ,
2 , > 2 ,

(8)i

i i

i
i

i

0

0
0

where 0 is a given constant value.

2.6 Estimation of 3D displacement rates and time series

Due to the side-looking configurations of all SAR satellites,
the offset tracking-derived slant-range (DSR) and azimuth
(DAZI) displacements are the projections of the real 3D
ground surface displacements in the north (DN ), east (DE),
and vertical (DU) directions [40], as shown in eq. (9)

D D D
D D

D D D D

sin sin sin cos + cos
  = + ,

cos + sin = + ,
(9)

N E U

SR SR

N E AZI AZI

where and are the incidence angle and flight direction of
the SAR satellite, respectively, and DAZI and DSR are the
corresponding observation errors of the azimuth and slant-
range displacements, respectively. Given that eq. (9) is a
rank-deficient model for estimating the 3D displacements,
constraints should be introduced to stabilize the rank-defi-
cient model. For gravity-driven landslide movement, the

constraint can be constructed in terms of the following dis-
placement [31,32]:

H
Y D H

X D D+ = 0, (10)N E U

where H is the elevation of the terrain, and H
X and H

Y are

the first derivatives in the east (X ) and north (Y ) directions,
respectively, which can be calculated from the external
DEM. Thus, the 3D displacements of the landslide can be
resolved by combining eqs. (9) and (10), which are simpli-
fied into the following matrix form:
AX = L + L, (11)
where

H
Y

H
X= sin sin sin cos cos ; cos sin 0; 1

is the design matrix; D D DX = [ ]N E U are the unknown 3D
displacements in the north, east, and vertical directions, re-
spectively; and D DL = [ 0]SR AZI are the displacement ob-
servations in the slant-range and azimuth directions. The
routine method for resolving eq. (11) is to use the LS or SVD
method (e.g., ref. [41]). However, the design matrix may
contain random errors due to the uncertainty in the external
DEM; therefore, eq. (11) can be rewritten as follows:

A + X = L + L( ) , (12)
where A is the true matrix of , and is a matrix of

Figure 2 Spatiotemporal baseline configurations of the offset pairs selected in this study. (a) ALOS/PALSAR-1 dataset; (b) ALOS/PALSAR-2 dataset; (c)
ALOS/PALSAR-1 and ALOS/PALSAR-2 datasets.
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random error. Although the LS method can deal with random
errors in observations, it is unable to deal with random errors
in the design matrix because eq. (12) is nonlinear. The TLS
method [42], which is based on the errors-in-variables
model, has been developed to address this problem. Thus, the
TLS method was introduced in the current study to robustly
estimate the 3D displacement rates and time series. The
mean vectors and variance-covariance matrices of the error
vectors can be written in the following form:

NL
( A)vec

0
0 ,

0
0 , (13)L

A

where vec( ) indicates the straightening transformation of the
matrix, and L and A are the variance-covariance matrices
of L and , respectively. Thus, eq. (12) can be rewritten
as eq. (14), and the optimal estimation criterion for the TLS
solution is presented in eq. (15) [42].

+ A L + L X A L X[ ]
1

=([ ]+ )
1

=0, (14)

A A L Lvec( ) vec( ) + ( ) = min, (15)

The augmented matrix (G) of eq. (14) can be mathematically
written as follows:

G A L U U S V= [ ] =
0

, (16)m n m
1

+1
2

( +1)

where U U U= [ ]1 2 is an orthogonal matrix composed of n

eigenvectors of matrix A L A L[ ] [ ] ,
mV

V
V

V
V= 1

m

11

21

12

22
1

is an

orthogonal matrix composed of m + 1 eigenvectors of matrix

A A
L A

A L
L L

, and S=diag( , , , )m1 2 +1 is the singular

value of the augmented matrix (G). The TLS solution of the
3D displacement vector X can be obtained using the matrix
approximation theory of Eckart-Young-Mirsky [43,44],
which is formulated as follows:

X V V= . (17)12 22
1

3 Study area and datasets

3.1 Study area

The study area is located in the Wudongde Reservoir Area in
the lower reaches of the Jinsha River in Yunnan Province,
China (Figure 3). The reservoir area is situated on the
southeast edge of the Qinghai-Tibet Plateau (Figure 3(b))
and constitutes a transition zone between the Yunnan-
Guizhou Plateau and the Sichuan Basin, thus producing a
special geological setting, including deep and narrow valleys
and high mountains (Figure 3(a)) [45,46]. The study area is

one of the strongest tectonically active and seismically prone
areas in China. Moreover, it belongs to the subtropical
monsoon climate zone, characterized by concentrated rain-
fall, strong solar radiation, and high daily temperature dif-
ference [46], thereby causing strong weathering of the slope
materials. The annual average precipitation, ranging from
600–800 mm, is mainly concentrated from June to October
each year. This area is strongly susceptible to landslides due
to the combined effects of gravity, physical weathering,
seismic activities, and heavy rainfall [46,47].
Furthermore, the impoundment and discharge of reservoirs

result in adverse changes in the artificial and geological
environments, which may increase the risk of new landslide
development and ancient landslide reactivation [3,45]. Ac-
cordingly, the SAR-based, long-term time series displace-
ment monitoring of large-gradient landslides is critical for
hazard forecasting. Figure 3(c) shows an optical remote
sensing image of the Laojingbian landslide acquired in
January 2020 from Google Earth, and evidence shows the
development of serious disruptions and tensile cracks on the
slope surface. The altitudes in the foot and head sections of
the landslide are approximately 2130 and 3100 m a.s.l., re-
spectively, with a height difference of 970 m. There are two
faults that intersect with each other in the trailing section of
the slope (see the yellow lines in Figure 3(c)).

3.2 SAR datasets and ancillary data

We collected two stacks of SAR datasets from ascending
ALOS/PALSAR-1 and ALOS/PALSAR-2 sensors covering
the entire study area, including 14 scenes of ALOS/PAL-
SAR-1 images acquired between August 2007 and March
2011 and 12 ALOS/PALSAR-2 images acquired between
September 2014 and May 2020. There is a time gap of more
than three years between the last scene of the ALOS/PAL-
SAR-1 stack and the first scene of the ALOS/PALSAR-2
imagery. The study site is an east-facing slope with steep
terrain (Figure 3(a) and (c)). Thus, to alleviate the geome-
trical distortions and maximize visibility, ascending track
SAR images were selected. The coverage of the SAR images
is shown in Figure 3(a), and the basic SAR parameters are
listed in Table 2. Moreover, an ALOS global digital surface
model (AW3D30 DSM) data with one arc-second (~30 m)
resolution was used to compute the direction derivatives of
the terrain and remove the systematic offset errors caused by
topographic relief.

4 Performance analysis of the proposed ap-
proach

The performance of the proposed approach was assessed and
validated by mapping the displacements of the Laojingbian
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landslide (Figure 3), using the cross-platform ALOS/PAL-
SAR-1 and ALOS/PALSAR-2 SAR observations between
August 2007 and May 2020. First, we assessed the perfor-
mance of the proposed methods in terms of offset pairs with
larger spatiotemporal baselines and from cross-platform
ALOS/PALSAR-1 and ALOS/PALSAR-2 images by com-
paring the results derived from the proposed and traditional
methods. Second, the performance of our 2D displacement
inversion method that restrains the outliers was assessed
through a simulated experiment.

4.1 Performance for larger spatiotemporal baseline
pairs

To validate the performance of our proposed method by
using three offset pairs from ALOS/PALSAR-1 images with
larger spatiotemporal baselines, we compared the results

obtained from the traditional method and the proposed
method qualitatively and quantitatively, as there were no
GNSS data or other in situmeasurements. Figure 4 shows the
displacements in the slant-range direction, which we calcu-
lated using the traditional (left) and the proposed (right)
methods. The statistical histograms of the displacements in
the landslide-free areas are presented in Figure S1. The first
pair (Figures 4(a), (b) and S1(a)) was generated using the
ALOS/PALSAR-1 SAR images acquired on August 29,
2008, and on January 20, 2011, and had spatial and temporal
baselines of 4189 m and 874 d, respectively. The second pair
(Figures 4(c), (d) and S1(b)) was generated using the ALOS/
PALSAR-1 images acquired on August 29, 2008, and on
March 7, 2011, and had spatial and temporal baselines were
4641 m and 920 d, respectively. The third pair (Figures 4(e),
(f) and S1(c)) was generated using the ALOS/PALSAR-1
images acquired on October 14, 2008, and on March 7, 2011,

Table 2 Basic parameters of the ALOS/PALSAR-1 and ALOS/PALSAR-2 images

Satellites ALOS/PALSAR-1 ALOS/PALSAR-2

Flight direction Ascending Ascending

Incidence angle (°) 38.744 31.405

Azimuth (°) −10.39 −10.71

Pixel spacing (Rg × Az) 4.68 m × 3.17 m 4.29 m × 3.25 m

Number of images 14 12

Number of offset pairs 27 32

Temporal coverage August 27, 2007–March 7, 2011 September 26, 2014–May 15, 2020

Figure 3 (a) Topography of the study area and coverage of SAR datasets, in which the study area is shown as a red rectangle and the coverages of the SAR
datasets are illustrated by the white rectangles; (b) geographic location of the Laojingbian landslide (see the red star) in the Qinghai-Tibet Plateau, China; (c)
optical remote sensing image of the Laojingbian landslide acquired in January 2020 from Google Earth, where the red polygon indicates the landslide
boundary and the yellow lines delineate the existing faults.
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and had spatial and temporal baselines of 3714 m and 874 d,
respectively. From a visual inspection of the estimated dis-
placements, we can see from Figure 4(a), (c), and (e) that the
displacement fields derived from the traditional method are
severely contaminated by the systematic errors resulting
from the topographic relief, particularly for areas with high
altitude. In contrast, fewer systematic errors occurred in
Figure 4(b), (d), and (f), which were derived from the pro-
posed method. Moreover, it can be observed from Figure S1
that the displacement histograms derived from the proposed

method exhibited an approximately Gaussian distribution. In
contrast, the ones derived from the traditional method
showed a Rayleigh-like shape. This indicates that the mea-
surements from the traditional method contain severe dis-
placement errors and are biased [48].
To quantitatively assess the performance of the proposed

approach over the traditional method, the landslide-free re-
gions of each pair were selected to calculate the measure-
ment uncertainties based on the rationale described in Sect.
3.3, including the MEV, STD, and MSE of the displace-

Figure 4 Comparison of the results from the ALOS/PALSAR-1 images calculated with the traditional (left) and the proposed (right) methods, respectively.
The red contour delineates the landslide boundary. Slant-range displacements: (a), (b) from August 29, 2008, to January 20, 2011; (c), (d) from August 29,
2008, to March 7, 2011; (e), (f) from October 14, 2008, to March 7, 2011.
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ments. Table 3 compares the uncertainties between the re-
sults estimated using the traditional and proposed methods.
As shown in the table, the MEV, STD, and MSE of the
displacement results estimated from the improved method
are much smaller than those estimated from the proposed
method, and the total uncertainties ( ) of the three pairs
estimated from the improved method were all within 1 m.
Furthermore, for each pair, we calculated the reduction in
uncertainty in the results estimated from the proposed

method defined by = t p

t
(%), where t and p are the

uncertainties of the displacement resulting from the tradi-
tional and improved methods, respectively. We can see from
Table 3 that the parameter reached 74%, 71%, and 72%
for the three pairs, respectively, suggesting that the proposed
method significantly improved the accuracy of the offset
tracking measurements.

4.2 Performance for the cross-platform pairs

To validate the performance of the proposed method for
cross-platform pairs, we selected three cross-platform offset
pairs formed by the ALOS/PALSAR-1 and ALOS/PALSAR-
2 image datasets. The first pair covers the period between
December 5, 2010, and December 5, 2014, with spatial and
temporal baselines of 109.7 km and 1461 d, respectively; the
second one extends from January 20, 2011, to December 5,
2014, with spatial and temporal baselines of 109.3 km and
1415 d, respectively; and the third comprises the period be-
tween March 7, 2011, and September 25, 2015, with spatial
and temporal baselines of 108.9 km and 1663 d, respectively.
We compared the cross-platform displacements in the azi-
muth and slant-range directions of the Laojingbian landslide
produced by the proposed and traditional methods. Figure 5
shows the 2D displacement maps that we calculated using
the proposed method, whereas Figure S2 shows those gen-
erated using the traditional method. We can see from Figure
S2 that the 2D landslide displacements are completely ob-
scured by errors resulting from the topographic relief and the
incidence angle difference between the ALOS/PALSAR-1
and ALOS/PALSAR-2 images. The offsets caused by errors
in both the azimuth and slant-range directions reached
100 m. Thus, the traditional method fails to retrieve the
landslide displacements between the cross-platform ALOS/

PALSAR-1 and ALOS/PALSAR-2 images. In comparison,
the displacement maps calculated using the proposed method
(see Figure 5) effectively eliminate the errors caused by to-
pographic relief and incidence angle difference, thereby
ensuring the accurate mapping of 2D landslide displacement
fields.
To quantitatively validate the results, we analyzed the

cross-correlation values of the selected pairs estimated using
the traditional and proposed methods, with the results shown
in Figure S3. As indicated in Figure S3, the pairs derived
from the proposed method show improved cross-correlation,
and the proportion of high cross-correlation values is clearly
larger in the results obtained by the proposed method than
those by the traditional method. This suggests that the pro-
posed method has higher measurement precision.

5 Displacement results and analyses of the
Laojingbian landslide

Using the cross-platform ALOS/PALSAR-1 and ALOS/
PALSAR-2 images, we retrieved the long-term 2D dis-
placement rates and time series of the Laojingbian landslide
from August 2007 to May 2020 following the rationale de-
scribed in Sect. 2.5, which is also discussed in Sect. 5.1.
Then, we estimated the long-term 3D displacement rates and
time series (discussed in Sect. 5.2), using the 2D displace-
ments and external DEM, based on the method elaborated in
Sect. 2.6. Finally, we evaluate the estimated displacement
results in Sect. 5.3.

5.1 2D long-term displacement rates and time series

Figure 6 shows the 2D annual displacement rates of the
Laojingbian landslide during different periods. In Figure 6(a),
(c), and (e), the blue colors indicate that the pixels are
moving along the flight direction of the satellites, while the
blue colors in Figure 6(b), (d), and (f) indicate that the
landslide is moving away from the satellites. Furthermore, as
shown in Figure 6, the landslide movements were simulta-
neously measured in both the azimuth and slant-range di-
rections, suggesting that the Laojingbian landslide has 3D
movement characteristics. The maximum displacement rates
in the azimuth direction from August 2007 to March 2011,

Table 3 Comparison of the uncertainties between the results estimated from the traditional and proposed methodsa)

Pairs
MEV (m) STD (m) MSE (m) Reduced

uncertainty (%)Trad. Impr. Trad. Impr. Trad. Impr.

20080829-20110120 1.68 0.43 2.63 0.67 3.12 0.80 74

20080829-20110307 1.76 0.47 2.66 0.79 3.19 0.92 71

20081014-20110307 1.47 0.44 2.30 0.62 2.73 0.76 72
a) Trad. and Impr. represent the results estimated using the traditional and improved methods, respectively.
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from September 2014 to May 2020, and from August 2007 to
May 2020 were −0.9, −1.5, and −1.0 m/year, respectively,
and the corresponding displacement rates in the slant-range
direction were −1.6, −2.6 and −1.7 m/year. The results sug-
gest that the landslide movement in the slant-range direction
is approximately 1.7 times that in the azimuth direction. The
average slope aspect derived from DEM indicates that the
Laojingbian landslide is oriented toward the east, which is
nearly perpendicular to the flight directions (approximately
−10° from the north) of the ALOS/PALSAR-1 and ALOS/
PALSAR-2 sensors. Thus, the observed landslide displace-

ment mainly occurred in the slant-range direction. Moreover,
the 2D displacement rates of the landslide increased with
time, suggesting that the landslide may have been in the
accelerated displacement stage during the observational
period of the ALOS/PALSAR-2 images. On the basis of the
2D displacement rates presented in Figure 6, we can observe
a clear boundary of the maximum displacement regions (see
the left slope). This finding demonstrates that the SAR offset
tracking method has the potential to map the most active part
of a landslide compared to the traditional InSAR techniques,
which exhibit significant limitations in the capability to

Figure 5 Cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 displacements in the azimuth (left) and slant-range (right) directions of the Laojingbian
landslide derived from the proposed method. The red lines delineate the boundary of the landslide. (a), (b) Displacements between December 5, 2010, and
December 5, 2014; (c), (d) displacements between January 20, 2011, and December 5, 2014; (e), (f) displacements between March 7, 2011, and September
25, 2015.
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measure large-gradient deformation due to the ambiguous
nature of the observations [49].
Six feature points (P1–P6) located on different parts of the

landslide were selected to illustrate the 2D displacement time
series in the azimuth and slant-range directions. The loca-
tions of points P1–P6 are marked in Figure 12(a), where P1–
P5 are located on the left slope (i.e., Block I) and P6 on the
right slope (i.e., Block II). Figure 7 shows the 2D displace-
ment time series for P1‒P6 from August 2007 to May 2020,
where the error bars indicate the standard deviation of the
measurements. We can see that the largest cumulative dis-
placement was observed at point P2, i.e., in the middle of
Block I, the cumulative displacements in the azimuth and
slant-range directions reached −13.8 and −23.8 m, respec-
tively, within nearly 13 years; and the smallest cumulative
displacements were observed at P6, i.e., in the middle of
Block II, the cumulative displacements were 2.2 and −4.0 m
in the azimuth and slant-range directions, respectively.

Meanwhile, larger cumulative displacements in both the
azimuth and slant-range directions were also measured at P1,
P3, and P5. Evidently, all points showed similar nonlinear
displacement trends with varying rates and movement be-
haviors. The accelerated displacement signals were captured
at P1, P2, P3, and P5 on September 25, 2015, which we
discussed in further detail in Sect. 6.2.

5.2 3D long-term displacement monitoring

On the basis of the estimated 2D displacements in Sect. 5.1,
the 3D long-term displacement rates and time series of the
Laojingbian landslide were retrieved using the method de-
scribed in Sect. 2.6. Figure 8 shows the 3D displacement
rates in the north-south (N-S), east-west (E-W), and up-down
(U-D) directions of the Laojingbian landslide from August
2007 to May 2020. The 3D displacement time series for P1‒
P6 marked in Figure 12(a) are presented in Figure 9. Nega-

Figure 6 2D long-term displacement rates in the azimuth and slant-range directions of the Laojingbian landslide retrieved with the ALOS/PALSAR-1 and
ALOS/PALSAR-2 images. The white dashed lines indicate the unstable region. (a), (b) Displacement rates in the azimuth and slant-range directions,
respectively, retrieved from the ALOS/PALSAR-1 images between August 2007 and March 2011; (c), (d) displacement rates in the azimuth and slant-range
directions, respectively, retrieved from the ALOS/PALSAR-2 images between September 2014 and May 2020; (e), (f) displacement rates in the azimuth and
slant-range directions, respectively, retrieved from the cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 images between August 2007 and May 2020.
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tive values (blue) in the N-S displacement maps indicate
northward landslide movement, negative values (blue) in the
E-W displacement maps indicate eastward landslide move-
ment, and negative values (blue colors) in the U-D dis-
placement maps indicate downward landslide movement.
The error bars in Figure 9 represent the standard deviations
of the estimated 3D displacements. As shown in Figures 8
and 9, the 3D displacement fields clearly revealed the fine-
scale spatiotemporal characteristics of the Laojingbian
landslide, which can lead to a better understanding of the
movement and failure mechanism of the slope in depth. The
N-S displacement rates shown in Figure 8(a), (d), and (g)
highlight the landslide with both northern movement (Block
I labeled in Figure 12(a)) and southern movement (Block II

labeled in Figure 12(a)), with the maximum displacement
rates of −0.6, −0.9, and −0.6 m/year from August 2007 to
March 2011, from September 2014 to May 2020, and from
August 2007 to May 2020, respectively. The E-W dis-
placement rates shown in Figure 8(b), (e), and (h) suggest the
eastward movement of the landslide, with maximum dis-
placement rates of −2.5, −4.3, and −2.8 m/year from August
2007 to March 2011, from September 2014 to May 2020, and
from August 2007 to May 2020, respectively. The U-D
displacement rates presented in Figure 8(c), (f), and (i) in-
dicate only downward movement of the landslide, with dis-
placement rates of −0.7, −1.2, and −0.8 m/year from August
2007 to March 2011, from September 2014 to May 2020, and
from August 2007 to May 2020, respectively. The results

Figure 7 2D displacement time series in the azimuth and slant-range directions of the Laojingbian landslide for points P1‒P6 (marked in Figure 12(a))
from August 2007 to May 2020, estimated with the cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 images. (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, and
(f) P6.
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revealed that the displacement in the E-W direction was
much larger than those in the N-S and U-D directions, sug-
gesting that the landslide movement was dominated by the E-
W displacement. Similar to the 2D displacements in Sect.
5.1, the displacements in the three directions increased with
time, and the boundary of the active part of the landslide was
clearly mapped by the 3D displacements.
As seen in Figure 9, larger 3D cumulative displacements

were observed at P1, P2, and P3. The cumulative displace-
ments from August 2007 to May 2020 in the N-S, E-W, and
U-D directions reached −7.3, −26.4, and −9.1 m, respec-
tively for P1; −7.5, −34.6, and −7.9 m, respectively, for P2;
and −5.4, −26.3, and −6.3 m, respectively, for P3. The
landslide movement experienced a nonlinear evolution at
these six points from August 2007 to May 2020; never-
theless, the spatial and temporal deformation patterns were
inconsonant. The N-S, E-W, and U-P displacements were
simultaneously observed at P1–P4 and P6, but the E-W and

U-D displacements only existed at P5. The N-S displacement
at P6 was greater than the U-D displacement. However, the
U-D displacements at other points were greater than or ap-
proximately equal to the N-S displacement. Similar to the 2D
displacement time series presented in Figure 7, accelerated
displacements were also observed at P1, P2, P3, and P5 on
September 25, 2015, which we discussed in detail in Sect.
6.2.

5.3 Evaluation of the displacement results

Previous studies [27,37] have demonstrated that measure-
ment uncertainty (MEV, STD, or MSE) can be used to
evaluate the estimated displacement results. Thus, given the
lack of ground-based measurements of displacements, we
exploited the MSE of the displacement in landslide-free
areas as an indicator to evaluate the displacement results
derived from the proposed method. The MSE was calculated

Figure 8 Estimated 3D displacement rates in the N-S, E-W, and U-D directions of the Laojingbian landslide. The white dashed lines indicate the unstable
region. (a)–(c) Displacement rates in the N-S, E-W, and U-D directions, respectively, calculated with the ALOS/PALSAR-1 images from August 2007 to
March 2011; (d)–(f) displacement rates in the N-S, E-W, and U-D directions, respectively, calculated with the ALOS/PALSAR-2 images from September
2014 to May 2020; (g)–(i) displacement rates in the N-S, E-W, and U-D directions, respectively, calculated with the cross-platform ALOS/PALSAR-1 and
ALOS/PALSAR-2 images from August 2007 to May 2020.
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using eq. (2). First, we evaluated the uncertainties (i.e., MEV,
STD, and MSE) of the 2D displacement rates estimated from
the proposed method between August 2007 and May 2020,
as shown in Figure 10. As indicated in Figure 10, the dis-
tributions of the 2D displacement rates in landslide-free
areas were approximately Gaussian and did not have a
Rayleigh-like shape. The MEV and STD of the 2D dis-
placement rates were both below 0.1 m/year, while the MSE
in both azimuth and slant-range directions were less than
0.15 m/year. This evidence suggests that the estimated dis-
placement rates are unbiased measurements, as illustrated in
ref. [48].
We also evaluated the MSE of the 2D displacement time

series in landslide-free areas, derived from the ALOS/PAL-
SAR-1 images, between August 2007 and March 2011.

Figure 11 shows the comparisons between the levels of MSE
estimated with the traditional and proposed methods. In
particular, Figure 11(a) shows the result in the azimuth di-
rection, and Figure 11(b) depicts the results in the slant-range
direction. Notably, we only compared the 2D displacement
time series during the period of August 2007 to March 2011
due to the fact that the traditional method fails to generate
long-term displacement time series. From Figure 11(a) and
(b), we can clearly see that the MSE of the 2D displacement
time series estimated with the proposed method in both the
azimuth and slant-range directions were less than 0.75 m,
well within the range of the SAR offset tracking precision at
1/10–1/30 pixels [8,9]. However, the displacement time
series estimated using the traditional method had much
higher uncertainties, even exceeding 1.5 m in the slant-range

Figure 9 Estimated 3D displacement time series of the Laojingbian landslide for P1‒P6 (marked in Figure 12(a)) from August 2007 to May 2020, retrieved
with cross-platform ALOS/PALSAR-1 and ALOS/PALSAR-2 images. (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, and (f) P6.
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direction in some SAR acquisitions. To better illustrate the
improvement of our proposed method, we calculated the
reduced percentage of uncertainties in the 2D displacement
time series, as presented in Figure 11(c) and (d). Compared
with the traditional method, the proposed method, on aver-
age, decreased the uncertainties by 30% and 31% in the
azimuth and slant-range directions, respectively.

6 Discussion

6.1 Spatial deformation patterns revealed by hor-
izontal movement vectors

The 3D displacement results provide a fine-scale description

of the real movements of the Laojingbian landslide, thus
providing us with a better understanding of the spatial de-
formation patterns of the landslide. Therefore, we inverted
the movement direction for each pixel of the landslide using
the N-S and E-W displacement rates, as shown in Figure 12.
Figure 12(a) shows a 3D view of the Laojingbian landslide,
in which geomorphological features, such as gullies and
unstable regions, are marked with lines of different colors.
Figure 12(b) shows the horizontal movement vectors from
August 2007 to March 2011, estimated using ALOS/PAL-
SAR-1 images. Figure 12(c) shows the horizontal compo-
nents from September 2014 to May 2020, calculated using
the ALOS/PALSAR-2 images, and Figure 12(d) shows the
horizontal displacements from August 2007 to May 2020,

Figure 10 Histograms of the displacement rates in the azimuth (a) and slant-range (b) directions in the landslide-free areas, derived from the ALOS/
PALSAR-1 and ALOS/PLASAR-2 images between August 2007 and May 2020.

Figure 11 Total measurement uncertainties (MSE) of the 2D displacement time series for the ALOS/PALSAR-1 images in the landslide-free areas,
calculated with the traditional (red lines) and improved (green lines) methods: (a) azimuth direction, (b) slant-range direction. The improvement percentages
in uncertainties using the proposed methods: (c) azimuth direction, (d) slant-range direction.
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estimated using the ALOS/PALSAR-1 and ALOS/PALSAR-
2 images. On the basis of geomorphological analysis (Figure
12(a)), combined with the horizontal movement vectors
presented in Figure 12(b), (c), and (d), we partitioned the
entire active part of the Laojingbian landslide into two blocks
of different deformation patterns and movement directions.
Block I and Block II are labeled with yellow dotted lines in
Figure 12(a). Block I is dominated by eastward movement,
with an azimuth of approximately 78°‒85°. Evidence from
geomorphological analysis (Figure 12(a)) and the slope as-
pect derived from DEM suggest that Block I is an east-
oriented slope. In comparison, Block II is dominated by
southeast movement, with an azimuth of approximately
115°‒125°. Its geomorphological features and slope aspect
illustrate that Block II is a southeast-facing slope. The
movement direction of the Laojingbian landslide retrieved
from SAR-derived 3D displacements is highly consistent
with that derived from geomorphological analysis, demon-
strating the reliability of the estimated 3D displacements to
some extent. Moreover, the movement rate of Block I is

much greater than that of Block II, thus indicating that Block
I is the main sliding area of the slope with the largest hor-
izontal displacement.

6.2 Kinematic modeling and early warning using 3D
displacement time series

As shown in Figures 7 and 9, the long-term displacement
time series retrieved from the cross-platform ALOS/PALS-
RA-1 and ALOS/PALSAR-2 images exhibited dominant
acceleration signals of the Laojingbian landslide after Feb-
ruary 13, 2015, indicating that the landslide seemed to have
entered the accelerative displacement stage after this date.
Evidence from Figure 12 demonstrates that the Laojingbian
landslide movement is dominated by eastward displacement.
Thus, we produced the horizontal displacement time series of
P2 (marked in Figure 12(a)) from August 2007 to May 2020
through the synthesis of its E-W and N-S displacement time
series (presented in Figure 9(b)), as shown in Figure 13 with
the blue triangles. In Figure 13, we can divide the entire

Figure 12 (a) Sketch of unstable blocks (indicated with Roman numbers I and II) of the Laojingbian landslide; (b) 2D vectors of the horizontal
displacement of the Laojingbian landslide from August 2007 to March 2011; (c) 2D vectors of the horizontal displacement from September 2014 to May
2020; (d) 2D vectors of the horizontal displacement from August 2007 to May 2020.
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displacement time series into two stages: the displacement
(Stage I) from August 27, 2007, to February 13, 2015, and
the displacement (Stage II) from February 13, 2015, to May
15, 2020. Notably, a similar displacement evolution behavior
was captured at P1, P2, P3, and P5, while point P2 had the
largest cumulative displacement (Figures 7 and 9). There-
fore, we chose an exemplary point of P2 for further analysis.
The displacement rates in Stages I and II were approximately
5.1 and 11.4 mm/day, respectively. Fan et al. [50] developed
a landslide early warning model by considering the changes
in the displacement rate measured from in situ instruments,
such as GNSS and crack gauges, as shown in eq. (S1).
Consequently, on the basis of the estimated long-term dis-
placement time series, we applied this model to issue an early
warning of the Laojingbian landslide. The tangential angle
(α) of the displacement-time curve in Stage II was calculated
using eq. (S1) with a value of 66°. According to the guide-
lines and the threshold for α in landslide early warning
previously established by geologists [50–53], the result
suggested that the Laojingbian landslide had entered the
accelerative displacement stage (Stage II) starting on Feb-
ruary 13, 2015, and then entered the constant displacement
stage (Stage I) before this date, with a constant movement
rate. The value of α lies in the interval of 45°–80°, suggesting
that the period from February 2015 to May 15, 2020 (i.e.,
Stage II) can be categorized as the initial accelerative dis-
placement stage. Therefore, a yellow warning (caution level)
should be issued to the Laojingbian landslide, based on the
warning criteria of landslides reported by Fan et al. [50] and
Ju et al. [51].

The temporal evolution of landslides can be characterized
using the unidimensional constitutive models of rocks.
Based on laboratory testing of rocks with various materials
[54], researchers have developed a series of unidimensional
constitutive laws to model landslide displacements, as shown
in eqs. (S2) and (S3), in which the former is suitable for
modeling landslide movement at the constant displacement
stage, whereas the latter is applied to model landslide
movements at the accelerative displacement stage. Thus, we
introduced eqs. (S2) and (S3) to model the observed dis-
placement time series of Stages I and II of the Laojingbian
landslide, respectively, as shown by the red line in Figure 13.
We noticed that the unidimensional constitutive laws of the
rocks perfectly modeled the displacement observed by cross-
platform SAR images, with correlation coefficients greater
than 0.98 for both stages. Next, we predicted the horizontal
displacement of the Laojingbian landslide and its evolution
in the following five years using the established model by
unidimensional constitutive laws and the observed dis-
placement. The results are indicated by the red curve within
the light red rectangle in Figure 13. The results suggest that
the Laojingbian landslide will experience dramatic dis-
placement in the following five years and that the cumulative
displacement in the horizontal direction may reach 66 m on
May 14, 2025, in the natural deformation state. It is worth
noting that this prediction could be affected by heavy rainfall
and strong earthquakes. Thus, near real-time monitoring,
forecasting, and early warning of the landslide should be
adopted by combining the physical models of rocks (e.g.,
eqs. (S1), (S2), and (S3)), as well as the measurements from

Figure 13 Modeling and prediction of landslide displacement using 3D displacement time series (for P2 marked in Figure 12(a)) from August 2007 to May
2020, shown in Figure 9(b). The blue triangles are the horizontal displacements observed using the ALOS/PALSAR-1 and ALOS/PALSAR-2 images, while
the red line represents the modeled (within the purple and yellow columns) and predicted displacements (within the light red column). In addition, V, R2, and
α represent the average horizontal displacement rate of the landslide, the coefficient of determination for displacement modeling, and the tangential angle of
the displacement-time curve, respectively.

19Yin Y P, et al. Sci China Tech Sci



in situ instruments (e.g., GNSS and crack gauges) and the
SAR offset tracking and InSAR techniques.

6.3 Possible factors influencing the Laojingbian land-
slide activity

The results presented in Figure 13 illustrate that the landslide
displacements measured by SAR images approach the results
of the unidimensional constitutive models of the rocks, in-
dicating that the Laojingbian landslide is a gravitational
sliding slope [54]. However, some discrepancies have been
noted between the observed and the modeled displacements
in some SAR acquisitions, suggesting that the landslide ac-
tivity may be impacted by external triggering factors. At the
same time, identifying the primary triggering factor of
landslides is crucial for successfully issuing early warnings.
Therefore, we collected data on historical earthquakes that
occurred within 250 km of the study area with a magnitude
of > Ms 4.0 and analyzed the relevance between seismic
events as well as the landslide displacement time series and
the residuals with respect to the modeled values. As pre-
sented in Figure 14, a strong earthquake event, namely, the
Ludian earthquake (Ms 6.5), happened on August 3, 2014, in
the study area, whose epicenter was approximately 110 km
away from this landslide. We can clearly see that the land-
slide displacement accelerated six months after the Ludian
earthquake event. Seismic shaking can weaken slopes across
the landscape and make them more prone to slide with delay
times of days to years after the earthquake [55]. Thus, the
Ludian earthquake and subsequent aftershocks may have
triggered an external impulse on the Laojingbian landslide.
Moreover, we can also see from Figure 14 that the residual is
strongly correlated with the earthquake activity when its

magnitude is larger than Ms 5.0 in the accelerative dis-
placement stage. Therefore, there is strong evidence in-
dicating that seismic activities can accelerate the
displacement of the Laojingbian landslide, even low-mag-
nitude earthquakes (~ Ms 5.0). A previous study [56] also
found evidence based on InSAR observations that a low-
magnitude earthquake (Ms 5.1) can increase the activity of
landslides. Additionally, according to Keefer [57], an
earthquake with a magnitude similar to that of the Ludian
event can trigger coherent landslides at distances of over
100 km from the epicenter or fault rupture. In this study, as
shown in the optical image in Figure 12(a), serious disrup-
tions and tensile cracks existed on the ground surface of the
Laojingbian landslide. There is evidence of extensive
cracking and disruption of slopes as a result of earthquakes
[50]. Thus, the early warning model of the Laojingbian
landslide should be able to assimilate the impact of earth-
quakes with magnitudes larger thanMw 5.0 in further studies.

7 Conclusions

InSAR methods are usually infeasible for mapping the
landside displacement with a large gradient, while the tra-
ditional SAR offset tracking method is unable to map the
landslide displacement between SAR images with larger
spatiotemporal baselines. Therefore, in this study, we pro-
pose an improved SAR offset tracking method to reliably and
efficiently retrieve the multi-dimensional and long-term time
series displacement of landslides in areas with complex
geomorphological and environmental conditions. Our
method comprises three procedures: (1) ortho-rectification
and accurate co-registration of SAR images, (2) optimal

Figure 14 Relevance analysis between 3D landslide displacement time series at P2 marked in Figure 12(a) and earthquake events. Residuals indicate the
differences between the observed displacement by SAR offsets and the one modeled using eqs. (S2) and (S3).
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selection of offset pairs and cross-correlation calculation,
and (3) estimation of the 2D and 3D displacement time
series. The advantages of the proposed method were verified
through analyses of the Laojingbian landslide, Jinsha River,
China. The results show that the new method can estimate
the landslide displacements in two (azimuth and slant-range
directions) and three (N-S, E-W, and U-D directions) di-
mensions using the SAR observations, not only from an
identical platform but also from cross-platforms, such as the
ALOS/PALSAR-1 and ALOS/PALSAR-2 sensors. The ma-
jor findings and contributions are summarized as follows.
The results derived from offset pairs with larger spatio-

temporal baselines and cross-platforms demonstrated that the
proposed method can effectively remove the systematic er-
rors caused by topographic relief and largely improve the
cross-correlation values of the long baseline offset pairs.
Furthermore, the total measurement uncertainty was reduced
by more than 70% for the displacement results calculated
with longer spatiotemporal baseline pairs from an identical
platform. With regard to the pairs from the cross-platform,
our method can retrieve the 2D displacements successfully;
in contrast, the traditional method fails to estimate the dis-
placements.
The results from the simulated experiment and real data

suggest that the proposed 2D displacement inversion method
can efficiently restrain observational outliers. The 2D and 3D
long-term time series displacements from August 2007 to
May 2020 successfully revealed the deformation patterns
and characteristics of the Laojingbian landslide, well ap-
proaching the modeled curve by unidimensional constitutive
laws of rocks. Compared with the traditional method, our
method largely decreases the measurement uncertainty in the
estimated displacements, with an average improvement
percentage of 30% in both the azimuth and slant-range di-
rections.
The 3D displacement field also reveals that the Lao-

jingbian landslide is an east-oriented slope consisting of two
active blocks. The landslide deformation is driven by the
force of gravity, whose movement is accelerated sig-
nificantly by seismic events with a magnitude greater than
Ms 5.0. Furthermore, the nearly 13 years’ worth of dis-
placement results illustrate that the Laojingbian landslide is
currently in the onset of the accelerative displacement stage.
Therefore, by combining long-term time series SAR offset
tracking observations and early warning criteria for land-
slides, we recommend that a yellow warning (caution level)
must be issued for the landslide. Thus, this research provides
a new tool and insightful approach for the issuance of early
warnings regarding catastrophic landslide hazards. It could
also serve as a reference for cases of rapid slope deformation
and failures in other regions.
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