

HJ-1AB

2022 DRAGON 5 SYMPOSIUM MID-TERM RESULTS REPORTING 17-21 OCTOBER 2022

CITID ON

Sentinel-

Sentinel-3

[PROJECT ID. 59089]

[LIDAR OBSERVATIONS FROM ESA'S AFOLUS (WIND, AEROSOL) AND CHINESE ACDL (AEROSOL, CO2) MISSIONS: VALIDATION AND ALGORITHM REFINEMENT FOR DATA QUALITY IMPROVEMENTS]

Dragon 5 Mid-term Results Project

<FRIDAY, 21/OCT/2022>

ID. 59089

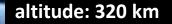
PROJECT TITLE: LIDAR OBSERVATIONS FROM ESA'S AEOLUS (WIND, AEROSOL) AND CHINESE ACDL (AEROSOL, CO2) MISSIONS: VALIDATION AND ALGORITHM REFINEMENT FOR DATA QUALITY IMPROVEMENTS

PRINCIPAL INVESTIGATORS: China Prof. Songhua Wu¹, Europe Dr. Oliver Reitebuch²

CO-AUTHORS: Weibiao Chen³, Xingying Zhang⁴, Guangyao Dai¹, Kangwen Sun¹, Xiaoying Liu¹, Fabian Weiler², Oliver Lux², Xiaochun Zhai⁴

Ocean University of China (OUC), College of Marine Technology, Qingdao, China
 Deutsches Zentrum f. Luft- u. Raumfahrt (DLR), Institute of Atmospheric Physics, Wessling, Germany
 Shanghai Institute of Optics and Fine Mechanics (SIOM), Chinese Academy of Sciences, Shanghai, China
 China Meteorological Administration (CMA), National Satellite Meteorological Centre (NSMC), Beijing, China

PRESENTED BY: Kangwen Sun



• Objectives

- Identify and correct the systematic error sources, guarantee and improve the performance of ALADIN (lidar instrument installed on Aeolus) and the data quality of the wind products
- Explore the application of Aeolus products
- Topics
- Calibration of ALADIN
- Validation of ALADIN L2B wind products
- Application of ALADIN products

- **1. Scientific objectives:**
- To improve the accuracy of weather forecasts;
- To advance our understanding of dynamics and climate processes;
- 2. Explorer objectives:
- To demonstrate space-based Doppler wind lidar potential for operational use.

4. Unique payload: ALADIN → Direct detection Doppler wind lidar

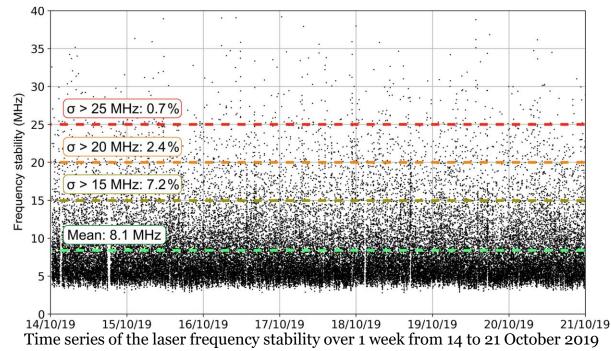
altitude: from ground to 20 ~30 km vertical resolution: 0.25 ~ 2 km

35°

distance: 230 km

requirements: random error: 2-4 m/s systematic error: <0.7 m/s

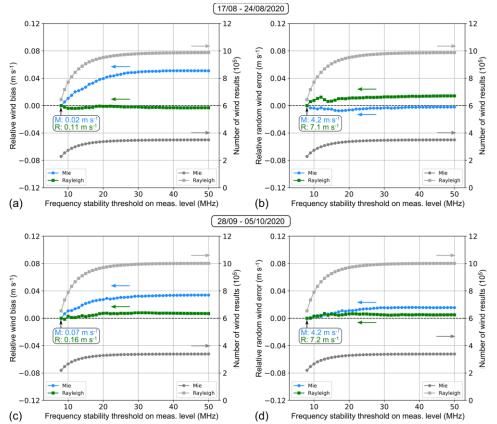
 horitontal resolution.


 3. Polar, sun-synchronous

 7 days repeat cycle with 111 orbits (≈ 15 orbit/day)

 6200 profiles of HLOS per day: 5~6 times more than radiosonde

Calibration of ALADIN: ALADIN laser frequency stability and its impact on wind measurement

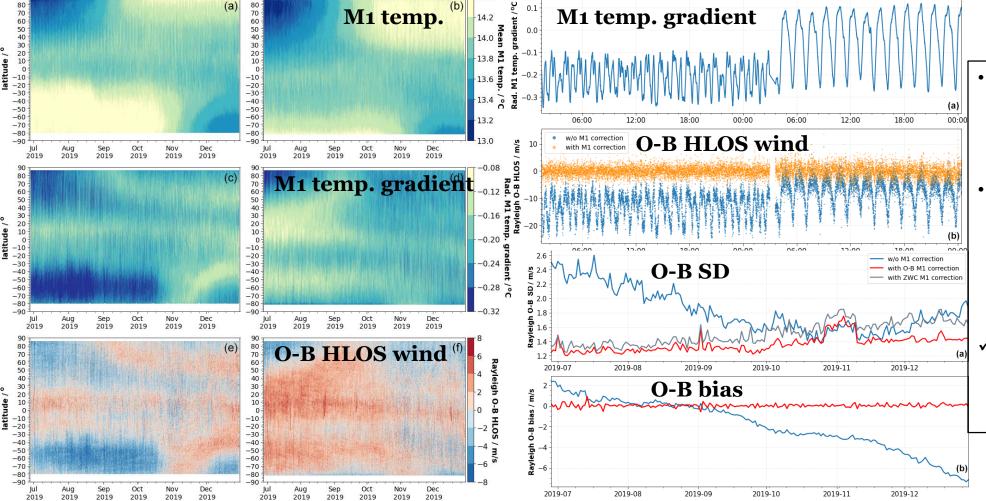


Monitoring the ALADIN laser frequency over more than 2 years :

- excellent frequency stability with pluse-to-pluse variations of about 10MHz
- the permanent occurrence of short periods with significantly enhanced frequency noise (> 30 MHz)

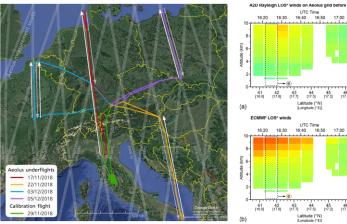
Analysis of the Aeolus wind error with respect to ECMWF model winds:

- frequency stability of the laser has a minor influence on the wind data quality on a global scale
- due to the small percentage of the frequency fluctuations are considerably enhanced

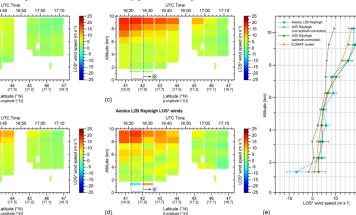


Wind bias (a) and random error (b) of the Mie (blue dots) and the Rayleigh channel (green squares) with respect to the ECMWF model background (O–B) depending on a frequency stability threshold for the period between 17 and 24 August 2020. Panels (c) and (d) show the corresponding data for the week between 28 September and 5 October 2020.

Calibration of ALADIN: correction of wind bias for ALADIN using M1 telescope temperatures

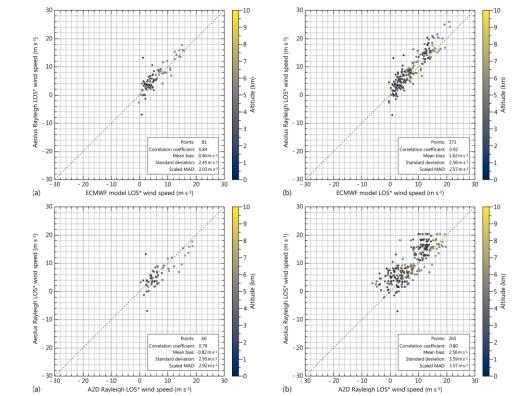

RSCC

- small fluctuations of the temperatures across the 1.5 m diameter primary mirror of the telescope **cause wind biases of up to 8 m s–1**
- due to changes in the top-ofatmosphere reflected
 shortwave and outgoing
 longwave radiation of the
 Earth and the related response
 of the telescope's thermal
 control system
- ECMWF model-equivalent
 winds are used as a reference
 to describe the wind bias to
 correct for this effect



Validation of ALADIN: validation with co-located airborne wind lidar A2D observations

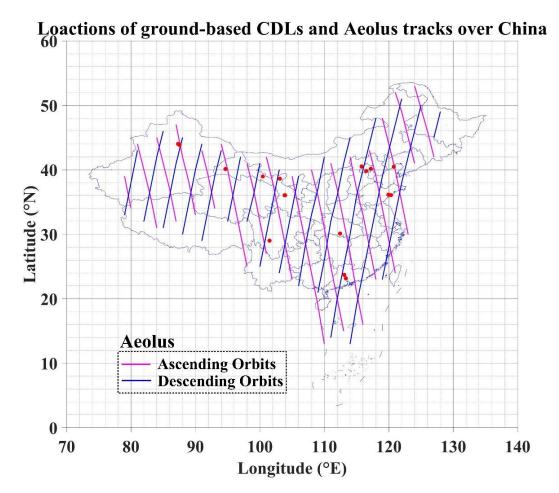
Flight no.	Date	Flight period (UTC)	Measurement period (UTC)	No. of A2D observations		R Falcon on Aeolus rack (start; stop)	No. of Aeolus observations
1	17/11/2018	15:14-19:14	A2D inoperable	No data	44.7° N, 10.6° E;	54.9° N, 7.8° E	12
2	22/11/2018	14:29-17:56	15:1 1–15:48 16:13–17:15	122 176	46.7° N, 16.8° E; 40.5° N, 18.1° E;	42.3° N, 17.7° E 47.2° N, 16.5° E	7 9
3	29/11/2018	09:56-14:00		Calibr	ation flight		
4	03/12/2018	15:48-19:31	16:48–17:13 17:22–17:48 17:53–18:29	82 87 117	47.8° N, 3.5° E; 50.1° N, 2.9° E; 47.1° E, 3.6° E;	50.5° N, 2.8° E 46.8° N, 3.7° E 50.6° N, 2.7° E	4 4 5
5	05/12/2018	14:56-18:22	15:53–16:45 16:55–17:18	173 78	50.3° N, 18.9° E; 54.0° N, 17.9° E;	54.9° N, 17.6° E 50.8° N, 18.8° E	7 4



RSCC

winds on Aeolus grid after azimuth

In the first airborne validation campaign after the launch and still during the commissioning phase of the mission, four coordinated flights along the satellite swath were conducted in late autumn of 2018, yielding wind data in the troposphere with high coverage of the Rayleigh channel.


esa

Statistical parameter	A2D Rayleigh vs. 2μm DWL	A2D Rayleigh vs. ECMWF	Aeolus Rayleigh vs. ECMWF	Aeolus Rayleigh vs. A2D Rayleigh
Number of compared bins	1301	524	371	265
Correlation coefficient (r)	0.83	0.89	0.92	0.80
Slope (A)	0.98 ± 0.02	1.03 ± 0.03	1.08 ± 0.02	0.83 ± 0.04
Intercept (B)	$-0.7 \mathrm{ms^{-1}}$	$-1.2 \mathrm{m s^{-1}}$	$0.9{ m ms^{-1}}$	$3.8{ m ms^{-1}}$
Mean bias	$-0.7 \mathrm{ms^{-1}}$	$-0.9{\rm ms^{-1}}$	$1.6{ m ms}^{-1}$	$2.6{ m ms}^{-1}$
Standard deviation	$3.7{ m ms^{-1}}$	$2.6{ m ms^{-1}}$	$2.6{ m ms^{-1}}$	3,6 m s ⁻¹
Scaled MAD	$3.4{ m ms^{-1}}$	$2.5{ m ms^{-1}}$	$2.6{ m ms^{-1}}$	$3.6 \mathrm{ms^{-1}}$

Validation of ALADIN: validation with ground-based CDLs over China

Ground-based CDL observation sites of the VAL-OUC campaign since

January 2020

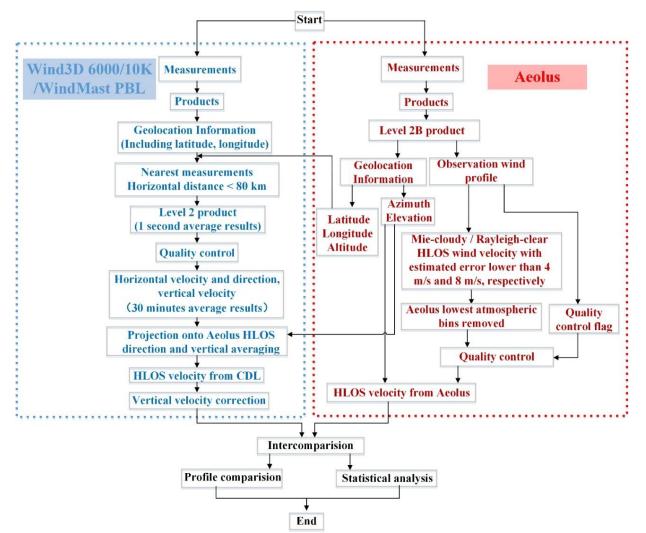
Validation campaigns	Instrument type	Measurement mode	Location	Latitude, longitude, altitude	Measurement period
VAL-OUC	WindMast PBL	DBS*	Dunhuang	40.12° N, 94.66° E; 1.15 km	From 7 Jan to 29 Dec 2020
	WindMast PBL	DBS	Lanzhou	36.05° N, 103.91° E; 1.51 km	From 7 Jan to 29 Dec 2020
	WindMast PBL	DBS	Zhangye	38.97° N, 100.45° E; 1.46 km	From 5 Jan to 27 Dec 2020
	Wind3D 6000	DBS	Jingzhou	30.11° N, 112.44° E; 0.03 km	From 24 Jun to 22 Jul 2020
	Wind3D 6000	DBS	Pinggu, Beijing	40.15° N, 117.22° E; 0.05 km	From 21 Apr to 2 Jun 2020
	Wind3D 6000	DBS	Changji	44.01° N, 87.30° E; 0.58 km	3 Dec 2020
	Wind3D 6000	DBS	Jiulong, Sichuan	29.01° N, 101.50° E; 2.90 km	From 24 Oct to 29 Nov 2020
	Wind3D 6000	DBS	Jiaozhou, Shandong	36.14° N, 119.93° E; 0.02 km	21 Dec 2020
	Wind3D 6000	DBS	Qingyuan, Guangdong	23.71° N, 113.09° E; 0.03 km	From 12 May to 27 Aug 2020
	Wind3D 6000	DBS	Xidazhuangke, Beijing	40.52° N, 115.78° E; 0.91 km	From 7 Jan to 31 Mar 2020
	Wind3D 6000	DBS	Yizhuang, Beijing	39.81° N, 116.48° E; 0.04 km	From 7 Apr to 25 Aug 2020
	Wind3D 6000	DBS	Huludao	40.47° N, 120.78° E; 0.10 km	From 1 Nov to 28 Dec 2020
	Wind3D 6000	DBS	Wuwei	38.62° N, 103.09° E; 1.37 km	From 11 Apr to 26 Dec 2020
	Wind3D 6000	DBS	Lanzhou	36.05° N, 103.83° E; 1.53 km	From 4 Jan to 26 Dec 2020
	Wind3D 6000	DBS	South China University of Technology	23.16° N, 113.34° E; 0.03 km	From 13 Oct to 29 Dec 2020
	Wind3D 6000	DBS	Ürümqi	43.85° N, 87.55° E; 0.84 km	From 14 Oct to 24 Dec 2020
	Wind3D 6000	DBS	Qingdao	36.07° N, 120.34° E; 0.04 km	From 2 Nov to 28 Dec 2020 8

* DBS: Doppler beam swinging.

Validation of ALADIN: validation with ground-based CDLs over China

CDL introduction and observations over China

V	Vind3D 6000		
Wavelength	1550 nm		
Repetition rate	10 kHz		
Pulse energy	150 µJ		
Pulse width	100 ns to 400 ns		
Detection range	80 m ~ 6000 m (10km extended)		
Data update rate4 Hz (0.25 sec / measurement)			
Range resolution	15 m ~ 30 m		
Wind speed accuracy	\leq 0.2 m/s		
Wind speed range	\pm 75m/s		
Wind direction accuracy	0.1°		
Power consumption	200W (500W when cooling)		
Operating temperature	$-30 \sim +50$ °C		
Housing classification	IP67		
Size	$746 \times 764 \times 1000$ mm		
Weight	< 80 kg		
Data transfer	Ethernet, GPRS (optional)		


WindMast PBL					
Wavelength	1550 nm				
Repetition rate	10 kHz				
Pulse energy	150 µJ				
Pulse width	100 ns to 400 ns				
Detection range	30 m ~ 4000 m				
Data update rate	4 Hz (0.25 sec / measurement)				
Range resolution	15 m ~ 30 m				
Wind speed accuracy	$\leq 0.1 \text{ m/s}$				
Wind speed range	±75m/s				
Wind direction accuracy	\leq 3°				
Operating temperature	-30 ~ +50 °C				
Housing classification	IP65				
Size	285×215×430mm				
Weight <30 kg					
Data transfer	Ethernet, GPRS (optional)				
	9				

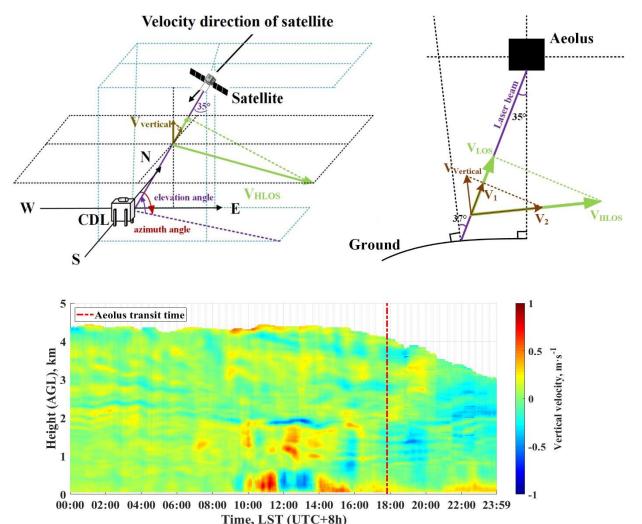
Validation of ALADIN: validation with ground-based CDLs over China

Intercomparison: Strategy

CDL:

• SNR >-10dB

Aeolus:


- "validity flag" is 'true';
- Level 2B Rayleigh-clear error<8m/s
- Level 2B Mie-cloudy error<4m/s
- The Aeolus lowest atmospheric bins close to the ground are removed.
- The horizontal distance between the locations of CDLs and the Aeolus footprints must be less than 80 km
- Theoretically, there is no time difference between CDL and simultaneous Aeolus measurements.
- Vertical averaging of the CDL-produced wind measurements over Aeolus range bins is performed.

Validation of ALADIN: validation with ground-based CDLs over China

Intercomparison: vertical velocity correction

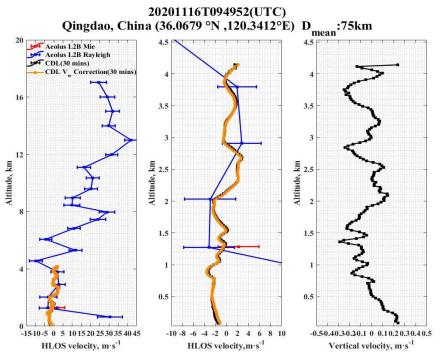
The schematic diagram of the vertical velocity impact on the HLOS velocity retrieval of Aeolus.

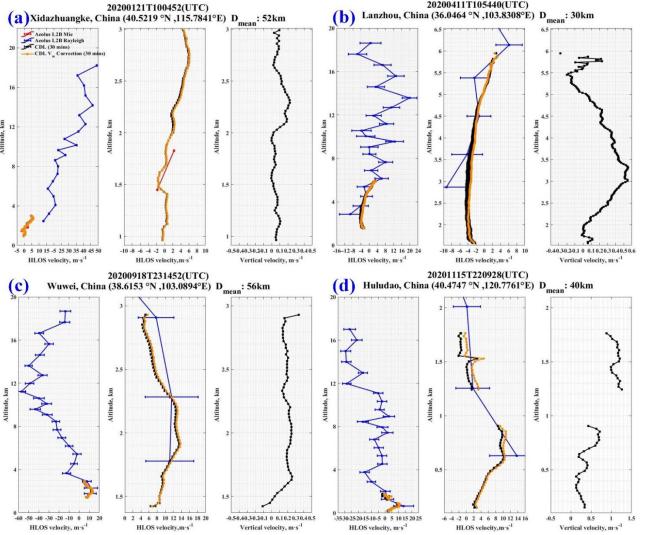
<u>35°</u> - The off-nadir angle of ALADIN.
<u>37°</u> - The viewing angle of the laser beam from ground (the curvature of the earth's surface).

According to the projection relationship, the vertical velocity impact on the HLOS is

$$V_2 = V_{\text{vertical}} \cdot \cot 37^{\circ} \qquad \text{Eq. (1)}$$

Hence the relationship between $\mathrm{HLOS}_{\mathrm{Aeolus}}$ and $\mathrm{HLOS}_{\mathrm{CDL}}$ should be


$$HLOS_{Aeolus} = HLOS_{CDL} + V_{vertical} \cot 37^{\circ} \qquad Eq. (2)$$


11

Validation of ALADIN: validation with ground-based CDLs over China

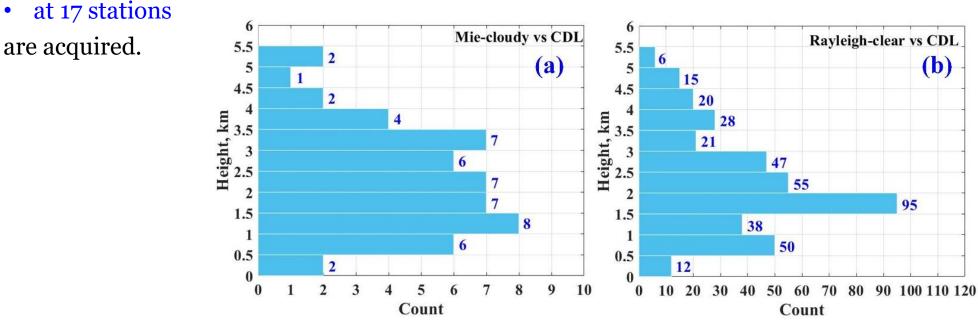
Results and discussion: measurement cases

Inter-comparison of HLOS wind velocities measured with CDL and Aeolus on 16 November 2020 at Qingdao (Shandong Province), China:

- Red lines: Aeolus L2B Mie-cloudy HLOS profiles;
- Blue lines: Aeolus L2B Rayleigh-clear HLOS profiles;
- Black lines: CDL-retrieved HLOS profiles;
- Yellow lines: CDL-retrieved HLOS profiles after vertical velocity correction.

٠

Dragon 5 Mid-term Results Reporting

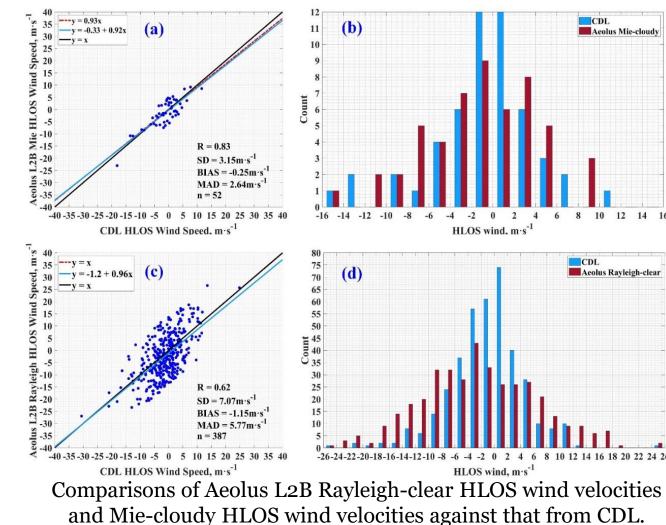


Validation of ALADIN: validation with ground-based CDLs over China

Results and discussion: statistical analysis

We compare the HLOS wind velocity results from Aeolus observations with the accompanying ground-based CDLs measurements within the VAL-OUC campaign.

- the time period of January to December 2020
- 52 simultaneous Mie-cloudy comparison pairs and 387 Rayleigh-clear comparison pairs •

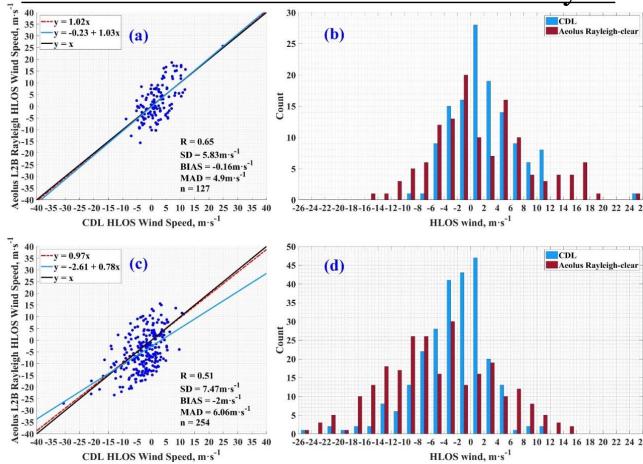

Counts of data pairs at different height ranges of (a) Mie-cloudy vs CDL and (b) Rayleigh-clear vs CDL

Validation of ALADIN: validation with ground-based CDLs over China

Results and discussion: statistical analysis

Statistical comparison of Aeolus HLOS winds and CDL-retrieved HLOS winds

Channel	Mie- cloudy	Rayleigh- clear
N points	52	387
Correlation	0.83	0.62
SD (m/s)	3.15	7.07
Scaled MAD (m/s)	2.64	5.77
BIAS (m/s)	-0.25	-1.15
"y=ax" Slope	0.93	1.00
"y=ax+b" Slope	0.92	0.96
"y=ax+b" Intercept (m/s)	-0.33	-1.20


The data with HLOS differences larger than one standard deviation are removed and are not considered.

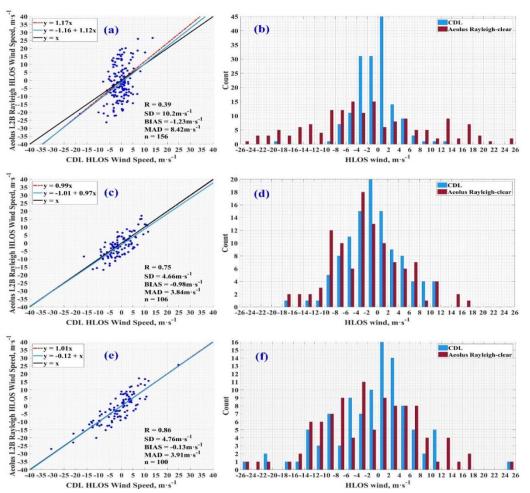
- <u>15 (22.39%) comparison pairs of Mie-cloudy HLOS</u>
- <u>94 (19.54%) comparison pairs of Rayleigh-clear HLOS</u>

are removed respectively.

Validation of ALADIN: validation with ground-based CDLs over China Results and discussion: statistical analysis

Comparisons of Aeolus Rayleigh-clear HLOS against the CDLretrieved HLOS according to the measurements made on (a)(b) ascending and (c)(d) descending tracks.

Statistical comparison of Aeolus HLOS winds and CDL-retrieved HLOS winds


Ascending/Descending	Ascending	Descending
N points	127	254
Correlation	0.65	0.51
SD (m/s)	5.83	7.47
Scaled MAD (m/s)	4.90	6.06
BIAS (m/s)	-0.16	-2.00
"y=ax" Slope	1.02	0.97
"y=ax+b" Slope	1.03	0.78
"y=ax+b" Intercept (m/s)	-0.23	-2.61

Consequently, the standard deviation, the scaled MAD and the bias on ascending tracks are <u>slightly</u> <u>better</u> than that on descending tracks.

Validation of ALADIN: validation with ground-based CDLs over China Results and discussion: statistical analysis Statistical comparison of A

The comparison between the Aeolus L2B Rayleigh HLOS data from (a)(b) Baseline 07 and 08, (c)(d) Baseline 09 and 10, and (e)(f) Baseline 11 against the CDL-retrieved HLOS data.

Statistical comparison of Aeolus HLOS winds and CDL-retrieved HLOS winds

Baselines	07 and 08	09 and 10	11
N points	156	106	100
Correlation	0.39	0.75	0.86
SD (m/s)	10.20	4.66	4.76
Scaled MAD (m/s)	8.42	3.84	3.91
BIAS (m/s)	-1.23	-0.98	-0.13
"y=ax" Slope	1.17	0.99	1.01
"y=ax+b" Slope	1.12	0.97	1.00
"y=ax+b" Intercept (m/s)	-1.16	-1.01	-0.12

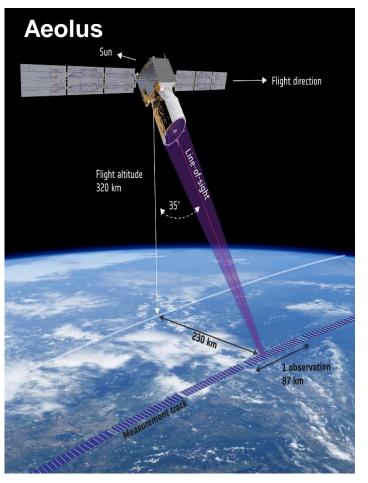
- Baseline 07 / Baseline 08: Jan. to Apr. 2020
- Baseline 09 / Baseline 10: May to Sep. 2020
- Baseline 11: Oct. to the end of 2020

Thanks to the

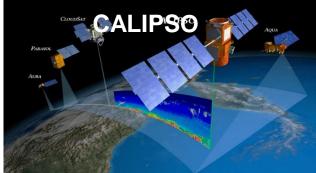
- <u>M1 mirror temperature correction</u>
- <u>different SNR thresholds for classification of Mie and</u> <u>Rayleigh</u>
- <u>Worldwide CAL/VAL team inputs</u>

Baseline 09/10/11 improved significantly than that from Baseline 07/08.

Validation of ALADIN: validation with ground-based CDLs over China


		Rayleigh-clear					
Campaigns/ Ins	Campaigns/ Instruments		SD,	MAD,	Bias,	Slope	Intercept,
VAL-OUC (this study)		0.62	7.07	5.77	-1.15	0.96	-1.20
WindVal III/ A2D (Lu	ıx et al., 2020a)	0.80	3.6	3.6	2.6	/	/
WindVal III/ 2 μm DWL (V	Vitschas et al., 2020)	0.95	4.75	3.97	2.11	0.99	2.23
AVATARE (Witscha	us et al, 2020)	0.76	5.27	4.36	-4.58	0.98	-4.39
AboVE-OHP (Khayki	in et al., 2020)	0.96	3.2	/	1.5	/	/
RV Polarstern cruise PS116	6 (Baars et al., 2020)	/	/	4.84	1.52	0.97	1.57
MADA (Polove et al. 2021)	in summer	0.82	5.8	/	0.0	1.1	0.0
MARA (Belova et al., 2021)	in winter	0.81	5.6	/	-1.3	0.87	-0.8
ESRAD (Belova et al., 2021)	in summer	0.92	4.5	/	-0.4	1.0	-0.5
LORAD (Delova et al., 2021)	in winter	0.88	5.2	/	-0.4	1.0	-0.6
WPR over Japan	Baseline 2B02	0.95	8.08	7.35	1.69	0.98	1.75
(Iwai et al., 2021)	Baseline 2B10	0.90	7.89	7.08	-0.82	0.94	-0.74
CDWL in Kobe	Baseline 2B02	0.98	6.17	4.92	0.46	1.05	0.61
(Iwai et al., 2021)	Baseline 2B10	0.96	5.69	5.21	-0.81	0.98	-0.88
CDWL in Okinawa	Baseline 2B02	0.93	6.57	5.68	1.08	0.99	1.07
(Iwai et al., 2021)	Baseline 2B10	0.79	6.53	5.58	-0.48	1.03	-0.52
GPS-RS in Okinawa	Baseline 2B02	0.99	4.55	4.77	1.00	0.99	1.00
(Iwai et al., 2021)	Baseline 2B10	0.99	4.43	3.97	0.45	1.01	0.38
RWP network over China	a (Guo et al., 2021)	0.94	4.2	/	-0.28	1.01	-0.41
RS over China (Guo	o et al., 2021)	0.90	/	/	0.09	0.92	-0.22

	ill that the				A CARE		
Campaigns/ Instruments					Mie-Cloudy		
		R	SD,	MAD,	Bias,	Slope	Intercept,
VAL-OUC (this		0.83	3.15	2.64	-0.25	0.92	-0.33
WindVal III/ A2D 2020a)		/	/	/	/	/	/
WindVal III/ 2 μm D et al., 202		0.92	2.95	2.24	2.26	0.96	2.7
AVATARE (Witscha	s et al, 2020)	0.91	3.02	2.22	-0.17	1.01	-0.21
AboVE-OHP (Khayki		/	/	/	/	/	/
RV PS116 (Baars e	et al., 2020)	/	/	1.58	0.95	0.95	1.13
	in summer	0.63 (Ascend);	6.8 (Ascend);	/	6.6 (Ascend);	1.0 (Ascend);	6.5 (Ascend);
MARA	in summer	0.72 (Descend)	6.5 (Descend)	/	-0.5 (Descend)	1.3 (Descend)	-2.4 (Descend)
(Belova et al., 2021)	in winter	0.73 (Ascend);	5.7 (Ascend);	1	-1.0(Ascend);	1.1 (Ascend);	0.4 (Ascend);
	iii wiiitei	0.70 (Descend)	5.6 (Descend)	/	0.9 (Descend)	1.2 (Descend)	-1.2 (Descend)
	in summon	0.76 (Ascend);	4.7 (Ascend);	1	0.5 (Ascend);	0.8 (Ascend);	0.5 (Ascend);
ESRAD	in summer	0.90 (Descend)	5.5 (Descend)	/	0.7 (Descend)	o.8 (Descend)	0.2 (Descend)
(Belova et al., 2021)	·	0.91 (Ascend);	3.9 (Ascend);	1	2.4 (Ascend);	1.0 (Ascend);	2.3 (Ascend);
	in winter	0.85 (Descend)	5.2 (Descend)	/	0.9 (Descend)	0.9 (Descend)	0.5 (Descend)
WPR over Japan	Baseline 2B02	0.95	6.83	5.94	2.42	0.98	2.44
(Iwai et al., 2021)	Baseline 2B10	0.93	6.47	5.66	-0.51	0.96	-0.44
CDWL in Kobe (Iwai	Baseline 2B02	0.98	4.80	3.55	1.63	1.05	1.76
et al., 2021)	Baseline 2B10	0.97	5.15	3.92	0.16	1.02	0.22
CDWL	Baseline 2B02	0.97	3.64	3.76	2.38	1.01	2.37
in Okinawa	Baseline 2B10	0.86	4.74	3.86	-0.26	0.86	-0.04
(Iwai et al., 2021)	Deseline oDee	o o -	4 =0		0.15		0.0 -
GPS-RS	Baseline 2B02	0.97	4.52	4.14	2.15	0.97	2.07
in Okinawa	Baseline 2B10	0.95	5.81	3.99	-0.71	0.92	-0.22
(Iwai et al., 2021)							
RWP network o (Guo et al., s	2021)	0.81	6.82	/	-0.64	0.99	18 0.6 7
RS over China (Guo	o et al., 2021)	0.92	/	/	-0.59	0.78	0.64


Application of ALADIN: dust transport observation with Aeolus and CALIPSO Aeolus/CALIOP and models introduction

Unit	Parameter	Value
Satellite	mean altitude	320 km
polar, sun-synchronous	mean orbital velocity	7.7 kms ⁻¹
ALADIN instrument	slant angle at satellite	35 ° off nadir
direct-detection Doppler	incidence angle at ground	37.6 * wrt local zenith*
wind lidar	vertical resolution	250 m – 2 km
	number of range gates	24 atmosphere and 1 background light
	range	ground to 30 km
	horizontal averaging length	90 km per observation
Laser Transmitter	wavelength	354.8 nm
Nd:YAG, frequency-tripled,	energy per pulse	80 mJ
diode-pumped	repetition rate	50.5 Hz
	linewidth	50 MHz FWHM
	pulse-to-pulse frequency stability	6-8 MHz rms
Telescope/Front Optics	primary mirror diameter	1.5 m
afocal Cassegrain,	background light filter bandwidth	1 nm
SiC structure	receive FOV	18.1 µrad
	transmit beam divergence	20 µrad (86% EE)**
Mie Spectrometer	Fizeau Free Spectral Range	0.91 pm / 2177 MHz
fringe imaging Fizeau	Fizeau Useful Spectral Range	0.66 pm / 1582 MHz
interferometer	Fizeau FWHM	67 nm / 159 MHz (atm.) 53 nm / 125 MHz (int.)
	total radiometric efficiency	0.71 % (BOL)
Rayleigh Spectrometer	Fabry-Perot Free Spectral Range	4.56 pm / 10913 MHz
double edge Fabry-Perot	filter separation	2.33 pm / 5547 MHz
interferometer, 2 filters, sequential	filter FWHM (direct/reflected)	1551 MHz / 1531 MHz
ocquernuar	total radiometric efficiency	6.4 % (BOL)
Detection Unit	Quantum efficiency	85 %
Accumulation CCD for Mie and Rayleigh receiver	Detection chain noise for each measurement / read-out	3.9 (Mie) – 4.7 (Ray) e ⁻ / pixel
	Dark current	1.9 e ⁻ / (pixel · s)
	Number of used pixels	16 lines * 25 rows

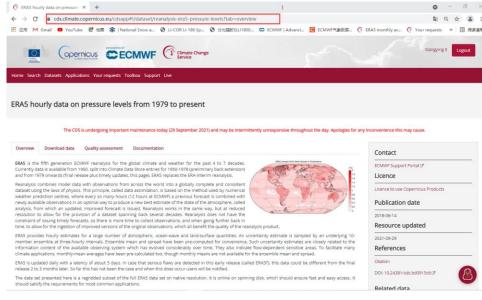
Data products:

- L2C wind vector
- Extinction coefficient@355nm

Туре	Sun-synchronous
Altitude	705 km
Inclination	98.2°
Period	99 minutes
Repeat Cycle	16 days
Dimensions	1.49 m × 1.84 m ×
Dimensions	2.31 m
Mass	600 kg
Power	562 W
Average Data Rate	34 Gb/day
Platform Pointing	Control: 0.05°
Requirements(30)	Knowledge: 0.04°

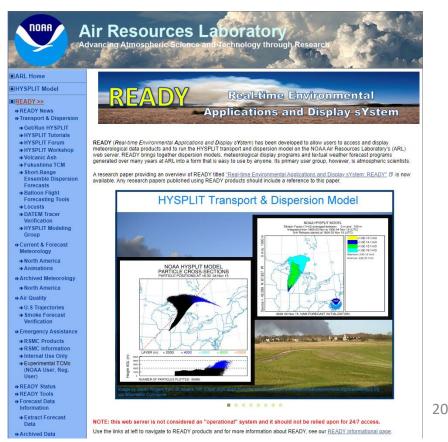
Data products:

- Extinction coefficient @532nm、1064nm
- Backscatter coefficient @ 532nm、1064nm
- Depolarization ratio@532nm



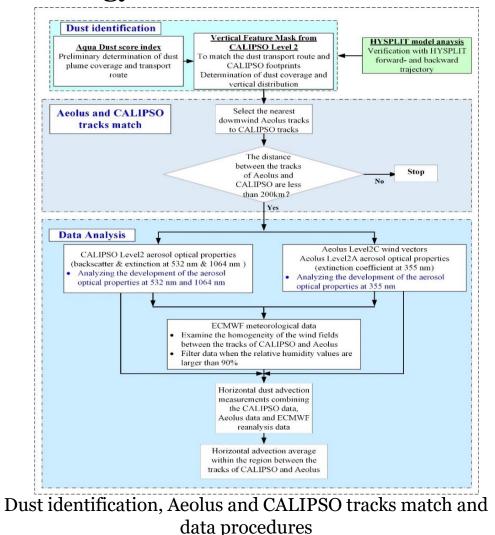
Application of ALADIN: dust transport observation with Aeolus and CALIPSO <u>Aeolus/CALIOP and models introduction</u>

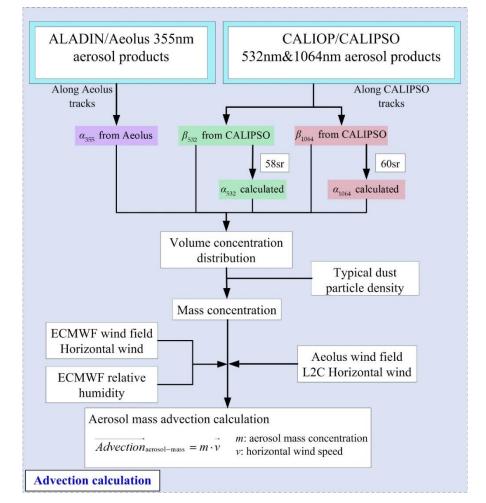
ECMWF


European Centre for Medium-Range Weather Forecasts, (https://www.ecmwf.int/)

4D-Var ERA5 0.25°×0.25° 31km hourly resolution 37 pressure levels

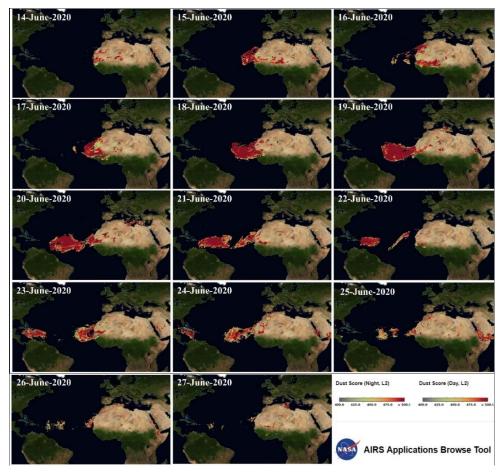
HYSPLIT

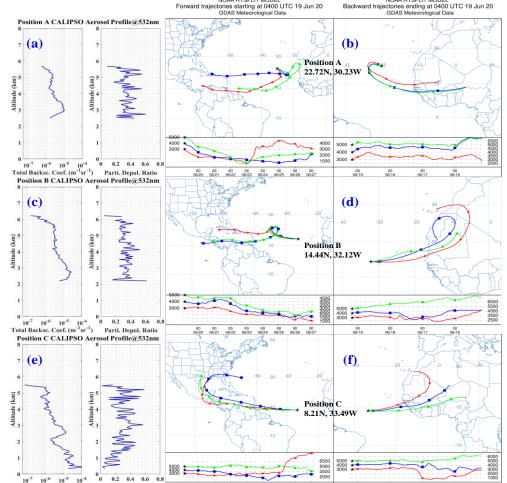

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (<u>https://www.ready.noaa.gov/index.php</u>)



Application of ALADIN: dust transport observation with Aeolus and CALIPSO <u>Methodology</u>

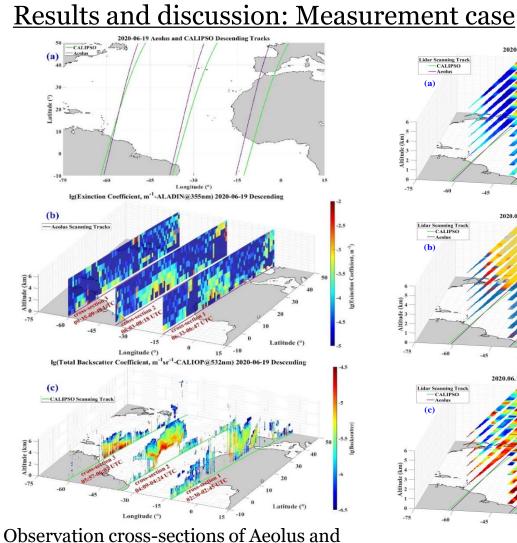
The flowchart of the dust mass advection calculation procedure



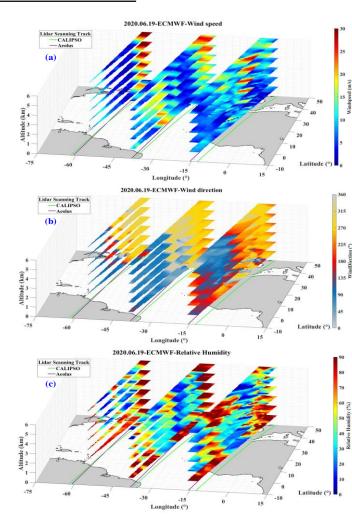

Application of ALADIN: dust transport observation with Aeolus and CALIPSO

Results and discussion

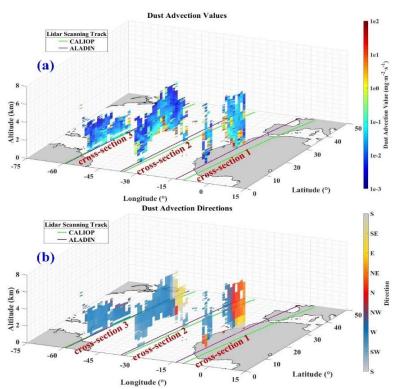
RSCC


The Dust Score Index provided by AIRS/Aqua at different stages, including emission, transportation, dispersion and deposition

(a)(c)(e) CALIPSO total backscatter coefficient profiles and particle depolarization ratio profiles capturing dust layers at around 0400UTC 19 June 2020. (b)(d)(f) HYSPLIT backward trajectories and forward trajectories at different positions of corresponding CALIPSO profiles and different altitudes on 0400UTC 19 June 2020.



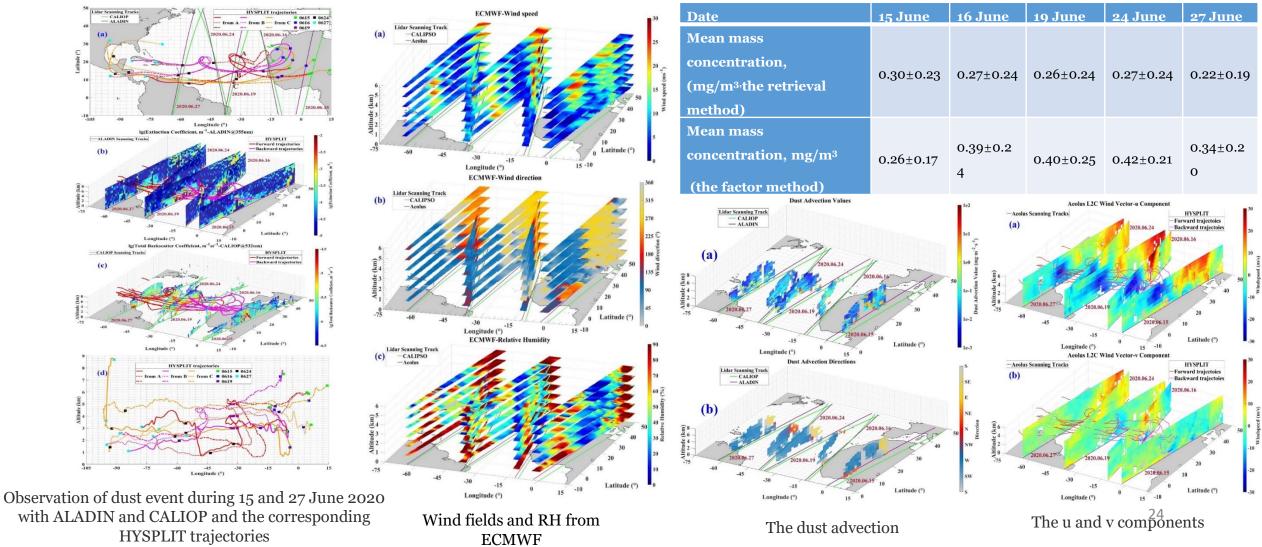
Application of ALADIN: dust transport observation with Aeolus and CALIPSO


NASCC

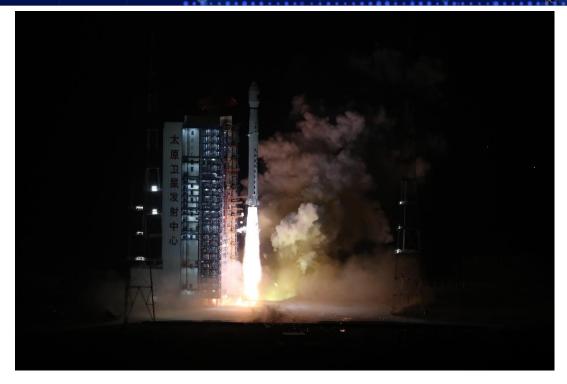
CALIPSO on 19 June 2020

Wind fields and RH from ECMWF

	Cross-section	1	2	3
	Mean mass concentration, mg/m ³ (the retrieval method)	0.28±0.23	0.26±0.24	0.22±0.19
dspeed (m/s)	Mean mass concentration, mg/m ³ (the factor method)	0.37±0.24	0.40±0.25	0.39±0.27



The dust advection calculated with data from ALADIN, CALIOP and ECMWF


Application of ALADIN: dust transport observation with Aeolus and CALIPSO <u>Results and discussion: dust lifetime</u>

NASCC

The launch of ACDL

Chinese lidar mission <u>ACDL (Aerosol and Carbon dioxide Detection Lidar)</u> which was designed to measure CO2 and aerosol from space – has been launched to space successfully on <u>16 April 2022</u>. The <u>commissioning</u> <u>phase of ACDL is scheduled to be 6 months</u>, during which the calibration and validation campaigns are implemented and the retrieval algorithms of column carbon dioxide concentration and aerosol optical properties profiles are improved. It is expected that with the calibrations and validations of ACDL and the updates of retrieval algorithms, the products of ACDL will be accurate and robust for science applications.

European Young scientists contributions in Dragon 5

Name	Institution	Poster title	Contribution
Oliver Lux	DLR		Aeolus calibration and validation
Fabian Weiler	DLR		Aeolus calibration and validation

Chinese Young scientists contributions in Dragon 5

Name	Institution	Poster title	Contribution
Kangwen Sun	OUC	Aeolus wind products validation with ground-based CDLs net over China and Aeolus products application on aerosol transport	Aeolus validation and application
Xiaoying Liu	OUC		Aeolus validation

• Summary

- **Calibration of ALADIN:** The ALADIN laser frequency stability and its impact on wind measurement was assessed and the correction of wind bias for ALADIN using telescope temperatures was conducted.
- Validation of ALADIN L2B wind products: Co-located airborne wind lidar observations were performed in central Europe, meanwhile ground-based coherent Doppler wind lidars (CDLs) net was established over China, to verify the wind observations from Aeolus.
- **Application of ALADIN products:** Based on the observation of ALADIN, combined with the data of CALIOP, ECMWF and HYSPLIT, a long-term large-scale Saharan dust transport event is tracked and the possibility of calculating the dust mass advection is explored.

· eesa