SPACEBORNE OBSERVATIONS OF LIGHTNING NO2 IN THE ARCTIC

Xin Zhang^{1,2}, Ronald van der A^{1,2}, Jieying Ding², Henk Eskes², Jos van Geffen², Yan Yin¹, Juliëtte Anema^{2,3}, Chris Vagasky⁴, and Jeff L. Lapierre⁵

¹KNMI-NUIST Center for Atmospheric Composition, China ²KNMI, De Bilt, the Netherlands ³Wageningen University and Research, the Netherlands ⁴Vaisala Inc., USA ⁵ Earth Networks, USA

We have determined the Arctic lightning NO₂, its lifetime and production efficiency using consecutive TROPOMI observations.

Why Study Lightning NO, in the Arctic?

- The warming is four times faster in the Arctic than the average of the world.
- More lightning in the Arctic due to warming.
- Lightning NO, dominates the natural source of NO, in the upper troposphere.
- Lightning NO₂ affects **O₃, OH, CO, and CH₄**.
- Satellite measurements are a powerful tool to estimate lightning NO, directly.

Lightning NO, Selections

• Air parcels affected by lightning NO₂ are defined at three pressure levels (300 hPa, 500 hPa, and 700 hPa) based on the time and location of detected strokes (Figure 1a).

NOx

1.1.1

1.1.1

. . .

1.1.1

O3

OH

1.1.1

1.1.1

1.1.1

1.1.1

• To determine the location of the air parcels at the TROPOMI overpass time, we used the hourly ERA5 wind data (Figure 1b).

The final air parcel locations are com-

bined into one lightning mask (orange

• The final LNO₂ area (bright pixels in

slant column in the lightning mask.

Figure 1d) is the high tropospheric NO₂

lines in Figure 1c).

Results

- The Optical Transient Detector (OTD) instrument only observed lightning south of 75° N while the ground stroke data are from the Vaisala Global Lightning Dataset 360 (GLD360, 2019–2021).
- Both datasets show higher lightning rates over the Siberia and Alaska permafrost (60°–65° N, Figure 2a and b), which is the main Arctic fire regime.
- The stroke counts within the TROPOMI swaths (Figure 2c) are about 26% of the total counts and they share the same geographical pattern (Figure 2a).
- The proportion of within-swath lightning strokes increases with latitude from < 30%(60°-70° N) to 22%-62% (70°-80° N) and 45%-100% (80°-90° N, Figure 2d) due to more overlapping swaths at higher latitudes.

Figure 1. Schematic overview of selecting lightning NO, pixels. The TROPOMI-detected NO₂ tropospheric columns overlaid with (a) observed lightning strokes and (b) transported air parcels of lightning NO, at three pressure levels (300 hPa, 500 hPa, and 700 hPa). (c) Parcels are combined into one lightning mask (orange lines), which is overlapped with the high NO₂ selections (filled pixels). The different pixel colors stand for specific NO, selections. (d) Selection of lightning NO, in the mask by filtering out the low NO₂ (grey pixels).

Lightning NO, Estimations

V: vertical column density; BG: background NO₂

S: slant column density; AMF: air mass factor LNO₂: lightning NO₂

- The a priori LNO, profile is presented by a modified Gaussian distribution.
 - The peak width of Gaussian distribution is set as 60 hPa.
 - The peak level is the highest TROPOMI cloud pressure in the lightning mask.

For two consecutive orbits, the relationship between V_{LNO2} (mol m⁻²) at two timestamps can be defined as $A = \frac{-(T_2 - T_1)}{T_1} + D T \sum_{i=1}^{n} \frac{-(t_i - T_1)}{T_1}$

0.2 04 0.6 Stroke rate (# km⁻² month⁻¹)

Figure 2: (a) Mean GLD360 lightning stroke rate over June-August of 2019-2021; (b) Mean OTD lightning flash rate over June–August of 1996–1999; (c) Same as (b) but only counting the lightning inside the TROPOMI swaths during the 6 hour period before the TROPOMI overpass time. Grids with no lightning are set as transparent in (a)–(c) panels. (d) The monthly ratio of (c) to (b).

Figure 3: (a) Mean 4 km \times 4 km TROPOMI tropospheric NO₂ column density in the local afternoon during June–August of 2019–2021. The mining and oil & gas stations are gray and red circles shown in panel (a), respectively. The wildfire girds are located mainly in East Siberia by more than 300 fire detections of VIIRS (not shown). (b) Comparisons of NO₂ among four sources: lightning, mining, oil & gas, and wildfire. The bar of lightning represents the maximum NO₂ values over pixels of each lightning case. The wildfire, mining, and oil & gas bars are the daily maximum NO₂ values over typical locations.

• While the averaged LNO₂ is disappearing into the background, the NO_2 enhancements can still be observed over urban, industrial

Figure 4: The monthly NO, emissions from June to August in the Arctic from (a) wildfire, (b) soil, (c) ships, and (d) lightning. The lightning NO₂ emission is the mean values from 2019 to 2021. Other emissions are from the Copernicus Atmosphere Monitoring Service (CAMS) 2018 global emission inventories.

- Although the wildfire is mostly located in Siberia and Alaska, it dominates the NO_v over the Arctic land, while the soil emission is the second highest source.

$V_{\text{LNO}_{2T2}}A_{T2} = V_{\text{LNO}_{2T1}}A_{T1}e^{\frac{(12-11)}{\tau}} + PE\sum_{N}e^{\frac{(12-11)}{\tau}}$ $T: \text{TROPOMI overpass time} \qquad t: \text{ lightning occurring time} \qquad \tau: \text{ near-field LNO}_2 \text{ lifetime}$ $A: \text{ area } (m^2) \text{ of each pixel} \qquad PE: \text{LNO}_2 \text{ production efficiency (mol stroke}^{-1})$ $N: \text{ total number of strokes during the interval between consecutive orbits}$ $The exponential component considers the chemical loss of NO_2.$	 NO₂ enhancements can still be observed over urban, industrial, and wildfire regions (Figure 3a). The LNO₂ concentration is comparable to anthropogenic NO₂ although the time scale of emission is in the order of hours (Figure 3b). The ship emission is the main NO_x source over the Arctic ocean, but the LNO_x contributes to 78% of NO_x over the northeast of Arctic ocean.
Note that if there is no lightning between two consecutive orbits, the equation can be simplified and the lifetime t is estimated as 6 hours . $V_{\text{LNO}_{2T2}}A_{T2} = V_{\text{LNO}_{2T1}}A_{T1}e^{\frac{-(T_2-T_1)}{\tau}}$	Chen, Y. et al. (2021), Future Increases in Arctic Lightning and Fire Risk for Permafrost Carbon. Nat. Clim. Chang., 11, 404–410. Holzworth, R. H. et al. (2021), Lightning in the Arctic. Geophys. Res. Lett., 48, e2020GL091366. Zhang, X. et al. (2022), Spaceborne observations of lightning NO ₂ in the Arctic (in preparation).
Contact Xin Zhang Twitter @zhangxin_dawn	Email xinzhang1215@gmail.com Github zxdawn