A Temporal Polarimetric SAR Classification Method Based On **Polarimetric-Temporal Feature Selection**

Zhiyuan Lin, Jiaxin Cui, Qiang Yin*, Wen Hong

Beijing University of Chemical Technology (BUCT) College of Information Science and Technology, Beijing, China 2020210533@buct.edu.cn

Introduction

- Considering the similarity between feature maps in many aspects, a statistical similarity measure is intr oduced.
- we combine the feature graph similarity measure an d temporal model matching to perform feature sele ction from two dimensions.
- The Transformer structure is introduced to PolSAR time series data

Methods

Polarimetric dimensional feature extraction method **IESSM**:

IESSM = $(1 + \beta^2) \cdot \frac{\text{NEHS}(x, y) \cdot S(x, y)}{\text{NEHS}(x, y) + \beta^2 \cdot S(x, y)}$

where NEHS is the standard entropy histogram simil arity .S represents the structural similarity index mea sure (SSIM).

Temporal dimentional feature extraction method SSV: $SSV = \sqrt{ED^2 + (1 - SCS)^2}$

ED is the Euclidean distance, SCS is the spectral correlation similarity.

Table 1			
Features	IESSM	ssv	IESSM+SSV
Alpha	0.8995	0.2661	1.1656
Anisotropy	0.9171	0.5520	1.4691
Beta	0.9077	0.4850	1.3927
(1-H)(1-A)	0.8563	0.3491	1.2054
(1-H)A	0.7893	0.4473	1.2312
H(1-A)	0.8961	0.4971	1.3932
HA	0.9223	0.4925	1.4148
Delta	0.9137	0.5090	1.4227
Entropy	0.8532	0.3510	1.2042
Gamma	0.9176	0.7269	1.6445
Lambda	0.9084	0.2603	1.1687
Freeman_Dbl	0.8730	0.3831	1.2561
Freeman_Odd	0.8642	0.5951	1.4593
Freeman_Vol	0.8922	0.2275	1.1197

We selected 20 samples of the same crop and observed the change in feature magnitude values over time on each of the two features

Table 2 Classification accuracy comparison			
Method	Accuracy		
ResNet-14+all 14 features	86.68%		
Vision Transformer +all 14 features	88.02%		
ResNet-14+9 features	85.99%		

Experiment

· e esa

Transformer Encoder

The structure of Vision Transformer

Datasets

UAVSAR

- 2019/07/01 to 2019/08/12
- 15000×9900
- L band

Vision Transformer +9 features

Conclusions

- Vision Transformer shows better performance whe n using the same number of features.
- The decrease in accuracy of the 9 features we selec ted is less than 1% compared to all features, achiev ing roughly comparable accuracy.