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|. Introduction
mODbjective

Upgrade and develop methodologies to retrieve quantitative sea ice information

Including measurements of thickness, drift, concentration, and detection of icebergs.
» Satellite data: Sentinel series, SMOS, CryoSAT-2, CFOSAT; HY-2, GF series
» Arctic and regional sites with seasonal ice cover

Dragon-2 Dragon-3 Dragon-4 Dragon-5
5290 10501 32292, Partl 57889
. OnlySAR SAR + Optical Altimeter + SAR . Multiple data !
! Types 5 Types, thickness, Thickness, : More ice 5

| 5 drift deformation/drift | parameters
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Il. Main Results
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Sea ice concentration estimation with Chinese radiometer data
Sea ice chart and mapping with CFOSAT SWIM data

Sea ice thickness retrieval with active and passive microwave data
Sea ice thickness fusion with multi-platform altimeter data

Iceberg and melt pond detection with SAR and optical data

ARCc0.08-04.1 Ice Concentration (%): 20150906 ARCc0.08-04.6 Ice Thickness (m): 20161025
100 |




1. Sea ice concentration estimation with Chinese radiometer data

W Data source Contributors: NSOAS, FMI, and DMI

» HY-2B Scanning Microwave Radiometer (SMR)
» FY-3C Microwave Radiation Imager (MWRI)

® Method

» SIC was retrieved with intersensor calibration using the NASA Team (NT)
algorithm.

» Intersensor calibrations were performed between Ths from DMSP/SSMIS
and HY-2B/SMR or FY-3C/MWRI.



NT method included Dynamic Tie Points (DTPS)
For MYl and FYI. mean Tb values for
SIC > 95%.

For ocean: mean Tb values for 0% SIC.

Weather filtering

Atmospheric water vapor: GR(37/19) >
0.05 (NH) or 0.053 (SH)
Cloud liquid water: GR(22/19)> 0.045

_ _ I ‘A1 B .:A.\Qtrﬁo}_spheric water
Land contamination effect removal ‘Cloug-liquid water Vapor. iy

x4 y A

Method described by Parkinson et al. (1987)
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Ship SIC observation data

(2016, 2017, 2019)
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2. Sea ice chart and mapping with CFOSAT/SWIM data
W Data source Contributors: FIO and QDU

» CFOSAT: Chinese-French Oceanic Satellite

» SWIM: Surface Waves Investigation and Monitoring instrument

H~519 km
Incidences: 0°-2°-4°6°-8°10°
Antenna aperture: ~2°x2°

® Frequency: Ku (13.6
GHz)

® Incidence angle:
18x18 km

88 km 0/2/4/6/8/10°

% d§> ® Azimuth angle: 0-360°
18x18 k




™ Auxiliary data

AARI NSIDC
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» Waveform features

M i P = max(P;

1 Maximum power (MAX) maxg (Pi,) A, = Pmax9'0-95
2 Backscattering power (BSP) pp. _ Prnax, . ; 5 o5
'3 Pulse peakiness (PP) STy p, Y 26— ©Maxg ™

4 Stack standard deviation (SSD) LEW =Bin(A,y) - Bin(A,))

ng  _ D2 —R: _n:
5 Leading edge width (LEW) SSD, = \/Zi=1(P ip — Po) TEW =Bin(Ay,) - Bin(A,)

ng

500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 3000
Bin Bin



The characteristic of single feature and single angle

Kolmogorov-Smirnov (K-S) distance
d, =d.(F,,F,) = sup|Fn(x) — Fo(x)|

= miax(max(Fo (X(i)) — %,ﬁ - Fo (x(i)))

Distinguish sea ice and sea water better
than sea ice types

Discrimination between FYIl and MY is
the most difficult.

Discrimination between Tl and FYI is
slightly better than that between Tl and
MYI.
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W Sea ice type classification of multi-feature combinations using KNN method

Overall Accuracy
MAX-BSP-PP-SSD-LEW-TEW / 73.9%

MAX-BSP-PP-SSD-TEW / 81.0%
MAX-BSP-PP-SSD-TEW / 69.3%
MAX-BSP-PP-SSD-LEW / 75.3%
MAX-BSP-PP-SSD-LEW / 76.4%
MAX-BSP-PP-SSD-TEW / 77.9%



¥ Validation
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The percentage of the grids with the same type:

» 94.8% (SR-7 from November 11t — 17% and SAR/NR-1 on 11t)
» 97.7% (SR-7 from February 11 — 17t and SAR/NR-1 on 17t)
» 98.2% (SR-7 from March 11t — 17", and SAR/NR-1 on 17t™)

: NSIDC results of 1 day
: SAR results of 1 day
. SWIM results of 7 days




TONA

71°N14

70°N+

T1°NT

Seaice edge

170°W 175°W

(A) Sentinel-1 SAR
image, HV, at
18:04:46, Nov. 11t

170°W 175°W
ek L

(E) Sea ice region of
SWIM on Nov. 11th —
17th

(F) Sentinel-1 image and
SWIM data on Nov.

(B) Sea ice region of
NSIDC on Nov. 11t

170°W

70°N+

¢ 71°N{

(C) Sea ice region of

160°W

NSIDC on Nov. 14th

170°W
o

175°W

(G) Sea ice region of
SWIM on Nov. 11th

160°W

74°N

75°N

76°N

T0°N+

(D) Sea ice region of
NSIDC on Nov. 17t

170°W

175°W

N g

160°W

11th — 17t

F76°N

(H) Sea ice edge on Nov.

B Sea ice region

— Ice edges of NR-1
— Ice edges of SR-1

— Ice edges of SR-7

SWIM can provide
reliable daily sea ice
edge (15% seaice
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3. Sea ice thickness retrieval with active and passive microwave data
Contributors: NSOAS and FMI

» Accurate determination of the snow cover over
Arctic sea ice is significant for the retrieval of
the sea ice thickness.

» Developed a new snow depth retrieval method
over Arctic sea ice with a long short-term
memory (LSTM) deep learning algorithm based
on Operation IceBridge (OIB) snow depth data
and brightness temperature data of AMSR-2.
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® Method

> Brightness temperature correction Ty (f,p) = Ty(f,p) —(1— ffc) * Tyow (f, p)

SIC
Iy, (18.7V) — Ty, (6.9V) Ty, (36.5V) =Ty, (18.7V)
GR(18.7/6.9) = e rce ' — ice \~ ice )
» Input BT vector R(18.7/6.9) Ty, (187V) + Ty, (69V) GR(36.5/18.7) T, (365V) T T, (187V)
(36.5V) — 1T (36.5H
PR(36.5) — Lt (300V) = T, (56.5H)
b, (36.5V) + T (36.5H)
N\ o [
» LSTM neural > > S
MAPE — i sdo1B — s predicted . 100%
| | P sdorB n
[ " " ”
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4. Sea ice thickness fusion with multi-platform altimeter data
Contributors: FIO and AWI

» Single satellite: low temporal resolution or large gaps between profiles.

» Fusion of data: CryoSat-2+Sentinel-3A+HY-2B to enhance temporal
resolution and increase coverage.

» Data consistency: between satellite and field observations; inter-sensor.

Daily Weekly Monthly



Ice freeboard consistency between CryoSat-2/Sentinel-3A and OIB
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W Ice thickness retrieval and multi-platform fusion

» Single satellite: conversion of freeboard into thickness assuming hydrostatic equilibrium.

» Multi-platform fusion method: areal weighting interpolation and inverse distance weighted

» The time resolution was increased from 1 month to half a month; for some areas up to 10 days.

averaging.
50 5
Fusion

40 |- ULS =24
= =
3 7
- 3[] B =¥
=
- 2
= 20 £2
E
2

10 1
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Ice draft/thickness(m)

Satellite V.S. OIB

Apr MAE RMSE _ .
2018 (m) (m) Correlation coefficient
Fusion 0.44 0.60 0.62

CS2 0.50 0.69 0.52

S3 0.59 0.84 0.39

Apr MAE  RMSE _ —
2019 (m) (m) Correlation coefficient
Fusion 0.20 0.57 0.52

CS2 0.50 0.69 0.36

I1S2 0.88 1.06 0.34
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5. Iceberg and melt pond detection with SAR and optical data
Contributors: AWI, SCMU, FIO, and NJU

¥ Improvement of iceberg detection in SAR images for operations and science, using

multi-frequency data.

= AWI/UIT: Comparison of CFAR algorithms for iceberg detection
» CFAR filters are tested and compared in Arctic regions.

» Data: Sentinel-1 EW offers good coverage of the Arctic.

R

S1 EW image, HY o ] | Detections with Gaussian CFAR Objects detected with iterative
P -30 -5 i i , i -
HH-+HV-polarization HH - ——— filters using product (blue), and (vellow), and Wishart-based
sum (purple) of the HV/HH bands  (violet) CFAR filters



SCMU: Iceberg detection based on convolution neural network

Data source: Radarsat-2 HV
Method: adding an attention layer in U-net to enhance the training ability of

neural networks.

Improved U-net

A total of 1634 icebergs were manually marked,

1412 icebergs were identified by improved u-net, and the accuracy is 86.4%.



W FIO: Iceberg Detection by L band Compact Polarimetric SAR

» Data source: ALOS PALSAR guad-pol converts to compact-pol.

> N, represents the volume scattering, which has the largest contrast between
L 0

: . : : Ccp =2 kaka :UZ ﬂl

> N, Is beneficial to the detection of iceberg. 0 4,

iIceberg and background. U-t
2

oy e

Result
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Samples of melt pond

140° 0'W 139° 30'W 139° 0\\ 1387 30°W

s dark melt pond bright melt pond mmmm  open water 1 seaice

(a) Sentinel-2 in 2020-7-8, (b) one-layer neural
network , (c) Random Forest, (d) proposed method

light melt pond: 87.4%

(a) Sentinel-2 in 2020-6-30 , (b) one-layer neural
network , (c) Random Forest, (d) proposed method

dark melt ponds: 75.2%



EO Data Delivery

Data access (list all missions and issues if any). NB. in the tables please insert cumulative figures (since July 2020) for
no. of scenes of high bit rate data (e.g. S1 100 scenes). If data delivery is low bit rate by ftp, insert “ftp”

ESA Third Party Missions ESA Third Party Missions Chinese EO data

1. ALOS PALSAR 6 1. Sentinel-1 45 1. HY-2B 2018~2021
2. RadarSAT-2 12 2. Sentinel-3 SLAT 2017~2021 2.GF-3 23

3. 3. CryoSat-2 2017~2021 3. FY-3C 2019~2021
4. 4. 4.

5. 5. 5.

6. 6. 6.

Total: Total: Total:

Issues: Issues: Issues:

Iceberg detection, University in Iceberg detection, University in Tromsg/Norway:

Tromsg/Norway: ESA-Agreement with JAXA: S1 and S2 images via Science Hub since April

PALSAR-2 FB and WB images since April 2019 2019 (not specifically via Dragon)
(not specifically via Dragon)



Ill. Cooperation

»FlO, AWI, FMI, and NSOAS continue to develop sea ice

thickness retrieval algorithms.

»NSOAS, FMI and DMI develop sea ice concentration
estimation and SIC noise reduction algorithms.

»Joint effort by AWI/UIT, FIO, FMI, and SCMU is in preparation
to deal with the detection of icebergs in sea ice.

»Cooperations with ice services world-wide (e.g. Denmark,
Norway, Sweden, Canada, US, Argentina), plus Chalmers
Technical University in Gothenburg, Sweden.

» The work of sea ice thickness detection work was selected for

China-EU Space Science and Technology Cooperation Briefing.

»We were invited to introduce our work in webcasts.
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IVV. Young scientists and Publications

At present, Chinese students are the main participants in the project.
A proposal was submitted to support Training of Young European Scientist from

University in Tromsg (PhD level) working on iceberg detection.

Shi L., et al., Sea Ice Concentration Products over Polar Regions with Chinese FY3C/MWRI Data. Remote Sens. 2021,
13, 2174.

Dierking W. and Zhang X. are co-authors, “Using New Ocean Remote Sensing Data for Operational Applications:
Results from the Dragon 4 Cooperation Project”, Remote Sensing, 2021, 13, 2847.

Dierking W. et al., “Synergistic used of L- and C-band SAR satellites for sea ice monitoring”, IGARSS 2021.

Zhang X. et al., “Arctic Sea Ice Classification Based on HY-2B Dual-band Radar Altimeter Data during Winter to Early
Spring Conditions”, IEEE JSTARS, 2021, 14: 9855-9872.

Dong Z. et al., A Suitable Retrieval Algorithm of Arctic Snow Depths with AMSR-2 and Its Application to Sea Ice
Thicknesses of Cryosat-2 Data. Remote Sensing, 2022, 14, 1041.

Liu M., et al. “Arctic Sea Ice Classification Based on CFOSAT SWIM Data at Multiple Small Incidence Angles.” Remote
Sensing, 2021, 14, 91.

Liu M., et al. “Sea ice recognition for CFOSAT SWIM at multiple small incidence angles in the Arctic.” Front. Mar. Sci.,
2022, 9: 986228.



Bao L., Zhang X., Cao C., et al. Impact of Polarization Basis on Wind and Wave Parameters Estimation Using the

Azimuth Cutoff from GF-3 SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2022.
https://doi.org/10.1109/TGRS.2022.3204409
Zhang R., Zhang J., Zhang X., et al. Influence of Radar Parameters and Sea State on Wind Wave-Induced Velocity in C-

Band ATl SAR Ocean Surface Currents. Remote Sensing, 2022: 4135. https://doi.org/10.3390/rs14174135

Guan Y, Zhang J, Zhang X, et al. Study on the activity laws of fishing vessels in China's sea areas in winter and spring
and the effects of the COVID-19 pandemic based on AIS data. Frontiers in Marine Science, 2022: 588.
https://doi.org/10.3389/fmars

Cao C., Zhang J., Zhang X., et al. Modeling and Parameter Representation of Sea Clutter Amplitude at Different Grazing

Angles. IEEE Journal on Miniaturization for Air and Space Systems. (Accepted)

Guan Y., Zhang J., Zhang X., et al. Impacts of the COVID-19 Epidemic on Ship Activity in Dongying Port Waters. IEEE
Journal on Miniaturization for Air and Space Systems. (Accepted)

Fang H., Zhang X., et al. Evaluation of Arctic Sea Ice Drift Products based on FY-3, HY-2, AMSR2 and SSMIS

Radiometer Data. Remote Sensing. (Accepted)


https://doi.org/10.1109/TGRS.2022.3204409
https://doi.org/10.3390/rs14174135
https://doi.org/10.3389/fmars

V. Next planning

» |lceberg detection: improvement of algorithms, comparison and selection
of optimal one(s), collection of data for validation, validation, building
semi-operational environment (the key work of Sino-European joint effort).

» Sea ice drift: develop algorithm for Chinese HY-2 radiometer and for
alignment of C- and L-band images (at AWI and University in Tromsg)

» Sea ice thickness: Altimeter + SAR to improve the spatial resolution of

sea ice thickness product.
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