

MONITORING HARSH COASTAL ENVIRONMENTS USING SAR MULTIFREQUENCY POLARIMETRIC SCATTERING

2022 DRAGON 5 MIDETERM RESULTS SYMPOSIUM

Matteo Alparone, Ph.D.

Università degli Studi di Napoli Parthenope, Centro Direzionale isola C4, 80143, Naples, Italy

INTRODUCTION

Coastal regions represent areas where a large portion of the world's population lives. Human-induced phenomena, added to extreme natural events, lead to an everincreasing pressure on such regions. As a result, harsh coastal environments can be formed where wetlands, mudflats, mangroves, marshes etc. are present altogether. Space-borne synthetic aperture radars (SARs) sensors gain great importance in monitoring such areas since they allow obtaining high-resolution imagery collected during almost all-weather conditions and captured during day and night. Moreover, the use of SAR multi-polarimetric imaging modes allows obtaining improved monitoring accuracy with respect to the optical and single-polarisation cases.

In this study, a multi-frequency and multi-polarimetric approach is proposed to study the properties of harsh coastal environments.

Solway Firth coastal region: represents a very harsh coastal environment composed of marshes, mudflats, agricultural crops, hill farming and shallow water rich in sediments.

FULL-POLARIMETRIC SAR SCENES

BACKSCATTERING ANALYSIS

The average HH-, VV- and HV-polarized NRCSs are evaluated over the three ROIs and listed, in dB, in the following tables:

POLARIMETRIC ANALYSIS

Solway Firth coastal region: represents a very harsh coastal environment composed of marshes, mudflats, agricultural crops, hill farming and shallow water rich in sediments.

RADARSAT-2					
ROI	Mean σ^{0}_{HH} (dB)	Mean σ^0_{VV} (dB)	Mean σ^{0}_{HV} (dB)		
Land	-9.3	-9.9	-17.0		
Sea	-20.0	-17.8	-27.9		
Mudflat	-25.1	-20.9	-32.4		
CSG					
		CSG			
ROI	Mean σ^{0}_{HH} (dB)	CSG Mean σ^0_{VV} (dB)	Mean σ ⁰ HV (dB)		
ROI Land		Mean σ^{0}_{VV}			
	(dB)	Mean σ ⁰ vv (dB)	(dB)		

SEA

-20

-40

RADARSAT-2

≌ 0.5

150

100

ψ**(°)**

	ROI	$\sigma_{CPD}()$	VARIABILITY (%)	
)0	Land	73.7	19	
	Sea	53.2	14	
)	Mudflat	59.0	32	
)	FOCUS ON MUDFLAT			

SENTINEL-2 OPTICAL IMAGE

CO-POLARISATION SIGNATURES

 σ_{CPD} RELATIVE

CONCLUSIONS

A SAR multi-frequency and multi-polarimetric approach allows improving the understanding of the harsh coastal environment scattering processes SAR Full-Pol data may support the development of advanced and robust scattering-based algorithms for coastal management

KEY REFERENCES

1. M. Gade, S. Melchionna, K. Stelzer and J. Kohlus, "Multi-frequency SAR data help improving the monitor- ing of intertidal flats on the German North Sea coast," Es- tuarine, Coastal and Shelf Science, vol. 140, pp. 32-42, 2014.

E. Ferrentino, A. Buono, F. Nunziata, A. Marino and M. Migliaccio, "On the use of multipolarization satellite SAR data for coastline extraction in harsh coastal environments: the case of Solway Firth," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 249-257, 2021.

